Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TabSynDex: A Universal Metric for Robust Evaluation of Synthetic Tabular Data (2207.05295v2)

Published 12 Jul 2022 in cs.LG

Abstract: Synthetic tabular data generation becomes crucial when real data is limited, expensive to collect, or simply cannot be used due to privacy concerns. However, producing good quality synthetic data is challenging. Several probabilistic, statistical, generative adversarial networks (GANs), and variational auto-encoder (VAEs) based approaches have been presented for synthetic tabular data generation. Once generated, evaluating the quality of the synthetic data is quite challenging. Some of the traditional metrics have been used in the literature but there is lack of a common, robust, and single metric. This makes it difficult to properly compare the effectiveness of different synthetic tabular data generation methods. In this paper we propose a new universal metric, TabSynDex, for robust evaluation of synthetic data. The proposed metric assesses the similarity of synthetic data with real data through different component scores which evaluate the characteristics that are desirable for ``high quality'' synthetic data. Being a single score metric and having an implicit bound, TabSynDex can also be used to observe and evaluate the training of neural network based approaches. This would help in obtaining insights that was not possible earlier. We present several baseline models for comparative analysis of the proposed evaluation metric with existing generative models. We also give a comparative analysis between TabSynDex and existing synthetic tabular data evaluation metrics. This shows the effectiveness and universality of our metric over the existing metrics. Source Code: \url{https://github.com/vikram2000b/tabsyndex}

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Vikram S Chundawat (7 papers)
  2. Ayush K Tarun (6 papers)
  3. Murari Mandal (34 papers)
  4. Mukund Lahoti (1 paper)
  5. Pratik Narang (11 papers)
Citations (18)