Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Data Analytics With Synthetic Volume Expansion (2310.17848v3)

Published 27 Oct 2023 in stat.ML and cs.LG

Abstract: Synthetic data generation, a cornerstone of Generative Artificial Intelligence, promotes a paradigm shift in data science by addressing data scarcity and privacy while enabling unprecedented performance. As synthetic data becomes more prevalent, concerns emerge regarding the accuracy of statistical methods when applied to synthetic data in contrast to raw data. This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data. Regarding effectiveness, we present the Synthetic Data Generation for Analytics framework. This framework applies statistical approaches to high-quality synthetic data produced by generative models like tabular diffusion models, which, initially trained on raw data, benefit from insights from pertinent studies through transfer learning. A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize. This phenomenon, stemming from the challenge of accurately mirroring raw data distributions, highlights a "reflection point"-an ideal volume of synthetic data defined by specific error metrics. Through three case studies, sentiment analysis, predictive modeling of structured data, and inference in tabular data, we validate the superior performance of this framework compared to conventional approaches. On privacy, synthetic data imposes lower risks while supporting the differential privacy standard. These studies underscore synthetic data's untapped potential in redefining data science's landscape.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. {barticle}[author] \bauthor\bsnmAkbar, \bfnmMuhammad Usman\binitsM. U., \bauthor\bsnmWang, \bfnmWuhao\binitsW. and \bauthor\bsnmEklund, \bfnmAnders\binitsA. (\byear2023). \btitleBeware of Diffusion Models for Synthesizing Medical Images-a Comparison with Gans in Terms of Memorizing Brain MRI and Chest X-Ray Images. \bjournalAvailable at SSRN 4611613. \endbibitem
  2. {btechreport}[author] \bauthor\bsnmBreiman, \bfnmLeo\binitsL. (\byear1997). \btitleArcing the edge \btypeTechnical Report, \bpublisherCiteseer. \endbibitem
  3. {barticle}[author] \bauthor\bsnmCarroll, \bfnmMichael W\binitsM. W. (\byear2006). \btitleThe movement for open access law. \bjournalLaw Library Journal \bvolume92 \bpages315. \endbibitem
  4. {barticle}[author] \bauthor\bsnmDai, \bfnmBen\binitsB., \bauthor\bsnmShen, \bfnmXiaotong\binitsX. and \bauthor\bsnmPan, \bfnmWei\binitsW. (\byear2024). \btitleSignificance tests of feature relevance for a black-box learner. \bjournalIEEE Transactions on Neural Networks and Learning Systems \bvolume35 \bpages1898-1911. \endbibitem
  5. {barticle}[author] \bauthor\bsnmDinh, \bfnmLaurent\binitsL., \bauthor\bsnmKrueger, \bfnmDavid\binitsD. and \bauthor\bsnmBengio, \bfnmYoshua\binitsY. (\byear2014). \btitleNice: Non-linear independent components estimation. \bjournalarXiv preprint arXiv:1410.8516. \endbibitem
  6. {barticle}[author] \bauthor\bsnmDinh, \bfnmLaurent\binitsL., \bauthor\bsnmSohl-Dickstein, \bfnmJascha\binitsJ. and \bauthor\bsnmBengio, \bfnmSamy\binitsS. (\byear2016). \btitleDensity estimation using real nvp. \bjournalarXiv preprint arXiv:1605.08803. \endbibitem
  7. {barticle}[author] \bauthor\bsnmDorogush, \bfnmAnna V\binitsA. V., \bauthor\bsnmErshov, \bfnmVadim\binitsV. and \bauthor\bsnmGulin, \bfnmAndrey\binitsA. (\byear2018). \btitleCatBoost: unbiased boosting with categorical features. \bjournalarXiv preprint arXiv:1810.11363. \endbibitem
  8. {barticle}[author] \bauthor\bsnmEastwood, \bfnmBrian\binitsB. (\byear2023). \btitleWhat is synthetic data — and how can it help you competitively? \bjournalMIT Sloan School. \endbibitem
  9. {bincollection}[author] \bauthor\bsnmEfron, \bfnmBradley\binitsB. (\byear1992). \btitleBootstrap methods: another look at the jackknife. In \bbooktitleBreakthroughs in statistics \bpages569–593. \bpublisherSpringer. \endbibitem
  10. {barticle}[author] \bauthor\bsnmFriedman, \bfnmJerome H\binitsJ. H. (\byear2002). \btitleStochastic gradient boosting. \bjournalComputational statistics & data analysis \bvolume38 \bpages367–378. \endbibitem
  11. {barticle}[author] \bauthor\bsnmGartner (\byear2022). \btitleIs Synthetic Data the Future of AI? \bjournalGartner Newsroom Q&A. \endbibitem
  12. {barticle}[author] \bauthor\bsnmHo, \bfnmJonathan\binitsJ., \bauthor\bsnmJain, \bfnmAjay\binitsA. and \bauthor\bsnmAbbeel, \bfnmPieter\binitsP. (\byear2020). \btitleDenoising diffusion probabilistic models. \bjournalAdvances in Neural Information Processing Systems \bvolume33 \bpages6840–6851. \endbibitem
  13. {barticle}[author] \bauthor\bsnmHommel, \bfnmGerhard\binitsG. (\byear1983). \btitleTests of the overall hypothesis for arbitrary dependence structures. \bjournalBiometrical Journal \bvolume25 \bpages423–430. \endbibitem
  14. {barticle}[author] \bauthor\bsnmKiefer, \bfnmJack\binitsJ. (\byear1953). \btitleSequential minimax search for a maximum. \bjournalProceedings of the American mathematical society \bvolume4 \bpages502–506. \endbibitem
  15. {barticle}[author] \bauthor\bsnmKim, \bfnmJayoung\binitsJ., \bauthor\bsnmLee, \bfnmChaejeong\binitsC. and \bauthor\bsnmPark, \bfnmNoseong\binitsN. (\byear2022). \btitleStasy: Score-based tabular data synthesis. \bjournalarXiv preprint arXiv:2210.04018. \endbibitem
  16. {barticle}[author] \bauthor\bsnmKingma, \bfnmDurk P\binitsD. P. and \bauthor\bsnmDhariwal, \bfnmPrafulla\binitsP. (\byear2018). \btitleGlow: Generative flow with invertible 1x1 convolutions. \bjournalAdvances in neural information processing systems \bvolume31. \endbibitem
  17. {binproceedings}[author] \bauthor\bsnmKohavi, \bfnmRon\binitsR. \betalet al. (\byear1996). \btitleScaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In \bbooktitleKdd \bvolume96 \bpages202–207. \endbibitem
  18. {barticle}[author] \bauthor\bsnmLabrinidis, \bfnmAlexandros\binitsA. and \bauthor\bsnmJagadish, \bfnmHV\binitsH. (\byear2012). \btitleChallenges and opportunities with big data. \bjournalProceedings of the VLDB Endowment \bvolume5 \bpages2032–2033. \endbibitem
  19. {barticle}[author] \bauthor\bsnmLee, \bfnmChaejeong\binitsC., \bauthor\bsnmKim, \bfnmJayoung\binitsJ. and \bauthor\bsnmPark, \bfnmNoseong\binitsN. (\byear2023). \btitleCoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis. \bjournalarXiv preprint arXiv:2304.12654. \endbibitem
  20. {barticle}[author] \bauthor\bsnmLiu, \bfnmYifei\binitsY., \bauthor\bsnmShen, \bfnmRex\binitsR. and \bauthor\bsnmShen, \bfnmXiaotong\binitsX. (\byear2023). \btitlePerturbation-Assisted Sample Synthesis: A Novel Approach for Uncertainty Quantification. \bjournalRevised for IEEE Transactions on Pattern Analysis and Machine Intelligencei. arXiv preprint arXiv:2305.18671. \endbibitem
  21. {barticle}[author] \bauthor\bsnmLiu, \bfnmYaowu\binitsY. and \bauthor\bsnmXie, \bfnmJun\binitsJ. (\byear2020). \btitleCauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. \bjournalJournal of the American Statistical Association \bvolume115 \bpages393–402. \endbibitem
  22. {barticle}[author] \bauthor\bsnmLoshchilov, \bfnmIlya\binitsI. and \bauthor\bsnmHutter, \bfnmFrank\binitsF. (\byear2017). \btitleDecoupled weight decay regularization. \bjournalarXiv preprint arXiv:1711.05101. \endbibitem
  23. {binproceedings}[author] \bauthor\bsnmMadeo, \bfnmRenata CB\binitsR. C., \bauthor\bsnmLima, \bfnmClodoaldo AM\binitsC. A. and \bauthor\bsnmPeres, \bfnmSarajane M\binitsS. M. (\byear2013). \btitleGesture unit segmentation using support vector machines: segmenting gestures from rest positions. In \bbooktitleProceedings of the 28th Annual ACM Symposium on Applied Computing \bpages46–52. \endbibitem
  24. {binproceedings}[author] \bauthor\bsnmNichol, \bfnmAlexander Quinn\binitsA. Q. and \bauthor\bsnmDhariwal, \bfnmPrafulla\binitsP. (\byear2021). \btitleImproved denoising diffusion probabilistic models. In \bbooktitleInternational Conference on Machine Learning \bpages8162–8171. \bpublisherPMLR. \endbibitem
  25. {barticle}[author] \bauthor\bsnmOko, \bfnmKazusato\binitsK., \bauthor\bsnmAkiyama, \bfnmShunta\binitsS. and \bauthor\bsnmSuzuki, \bfnmTaiji\binitsT. (\byear2023). \btitleDiffusion Models are Minimax Optimal Distribution Estimators. \bjournalarXiv preprint arXiv:2303.01861. \endbibitem
  26. {bmisc}[author] \bauthor\bsnmOpenAI (\byear2023). \btitleGPT-4 Technical Report. \endbibitem
  27. {barticle}[author] \bauthor\bsnmPace, \bfnmR Kelley\binitsR. K. and \bauthor\bsnmBarry, \bfnmRonald\binitsR. (\byear1997). \btitleSparse spatial autoregressions. \bjournalStatistics & Probability Letters \bvolume33 \bpages291–297. \endbibitem
  28. {barticle}[author] \bauthor\bsnmSchapire, \bfnmRobert E\binitsR. E. (\byear1990). \btitleThe strength of weak learnability. \bjournalMachine learning \bvolume5 \bpages197–227. \endbibitem
  29. {barticle}[author] \bauthor\bsnmShwartz-Ziv, \bfnmRavid\binitsR. and \bauthor\bsnmArmon, \bfnmAmitai\binitsA. (\byear2022). \btitleTabular data: Deep learning is not all you need. \bjournalInformation Fusion \bvolume81 \bpages84–90. \endbibitem
  30. {barticle}[author] \bauthor\bsnmSong, \bfnmJiaming\binitsJ., \bauthor\bsnmMeng, \bfnmChenlin\binitsC. and \bauthor\bsnmErmon, \bfnmStefano\binitsS. (\byear2020). \btitleDenoising Diffusion Implicit Models. \bjournalarXiv:2010.02502. \endbibitem
  31. {barticle}[author] \bauthor\bsnmSweeney, \bfnmLatanya\binitsL. (\byear2002). \btitlek-anonymity: A model for protecting privacy. \bjournalInternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems \bvolume10 \bpages557–570. \endbibitem
  32. {bmisc}[author] \bauthor\bsnmToews, \bfnmRob\binitsR. (\byear2022). \btitleSynthetic data is about to transform artificial intelligence. \endbibitem
  33. {barticle}[author] \bauthor\bsnmTripuraneni, \bfnmNilesh\binitsN., \bauthor\bsnmJordan, \bfnmMichael\binitsM. and \bauthor\bsnmJin, \bfnmChi\binitsC. (\byear2020). \btitleOn the theory of transfer learning: The importance of task diversity. \bjournalAdvances in neural information processing systems \bvolume33 \bpages7852–7862. \endbibitem
  34. {barticle}[author] \bauthor\bsnmWasserman, \bfnmLarry\binitsL., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. (\byear2020). \btitleUniversal inference. \bjournalProceedings of the National Academy of Sciences \bvolume117 \bpages16880–16890. \endbibitem
  35. {barticle}[author] \bauthor\bsnmWasserman, \bfnmLarry\binitsL. and \bauthor\bsnmRoeder, \bfnmKathryn\binitsK. (\byear2009). \btitleHigh dimensional variable selection. \bjournalAnnals of statistics \bvolume37 \bpages2178. \endbibitem
  36. {barticle}[author] \bauthor\bsnmWei, \bfnmDonglai\binitsD., \bauthor \betalet al. (\byear2021). \btitleDiffusion Models Beat GANs on Image Synthesis. \bjournalPreprint arXiv. \endbibitem
  37. {barticle}[author] \bauthor\bsnmZheng, \bfnmShuhan\binitsS. and \bauthor\bsnmCharoenphakdee, \bfnmNontawat\binitsN. (\byear2022). \btitleDiffusion models for missing value imputation in tabular data. \bjournalarXiv preprint arXiv:2210.17128. \endbibitem
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiaotong Shen (22 papers)
  2. Yifei Liu (43 papers)
  3. Rex Shen (4 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets