Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 11 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

A randomized benchmarking suite for mid-circuit measurements (2207.04836v2)

Published 11 Jul 2022 in quant-ph

Abstract: Mid-circuit measurements are a key component in many quantum information computing protocols, including quantum error correction, fault-tolerant logical operations, and measurement based quantum computing. As such, techniques to quickly and efficiently characterize or benchmark their performance are of great interest. Beyond the measured qubit, it is also relevant to determine what, if any, impact mid-circuit measurement has on adjacent, unmeasured, spectator qubits. Here, we present a mid-circuit measurement benchmarking suite developed from the ubiquitous paradigm of randomized benchmarking. We show how our benchmarking suite can be used to both detect as well as quantify errors on both measured and spectator qubits, including measurement-induced errors on spectator qubits and entangling errors between measured and spectator qubits. We demonstrate the scalability of our suite by simultaneously characterizing mid-circuit measurement on multiple qubits from an IBM Quantum Falcon device, and support our experimental results with numerical simulations. Further, using a mid-circuit measurement tomography protocol we establish the nature of the errors identified by our benchmarking suite.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com