Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis (2207.03988v1)

Published 8 Jul 2022 in econ.EM and stat.ME

Abstract: Vector autoregressions (VARs) with multivariate stochastic volatility are widely used for structural analysis. Often the structural model identified through economically meaningful restrictions--e.g., sign restrictions--is supposed to be independent of how the dependent variables are ordered. But since the reduced-form model is not order invariant, results from the structural analysis depend on the order of the variables. We consider a VAR based on the factor stochastic volatility that is constructed to be order invariant. We show that the presence of multivariate stochastic volatility allows for statistical identification of the model. We further prove that, with a suitable set of sign restrictions, the corresponding structural model is point-identified. An additional appeal of the proposed approach is that it can easily handle a large number of dependent variables as well as sign restrictions. We demonstrate the methodology through a structural analysis in which we use a 20-variable VAR with sign restrictions to identify 5 structural shocks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.