Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

GUIM -- General User and Item Embedding with Mixture of Representation in E-commerce (2207.00750v1)

Published 2 Jul 2022 in cs.AI and cs.IR

Abstract: Our goal is to build general representation (embedding) for each user and each product item across Alibaba's businesses, including Taobao and Tmall which are among the world's biggest e-commerce websites. The representation of users and items has been playing a critical role in various downstream applications, including recommendation system, search, marketing, demand forecasting and so on. Inspired from the BERT model in NLP domain, we propose a GUIM (General User Item embedding with Mixture of representation) model to achieve the goal with massive, structured, multi-modal data including the interactions among hundreds of millions of users and items. We utilize mixture of representation (MoR) as a novel representation form to model the diverse interests of each user. In addition, we use the InfoNCE from contrastive learning to avoid intractable computational costs due to the numerous size of item (token) vocabulary. Finally, we propose a set of representative downstream tasks to serve as a standard benchmark to evaluate the quality of the learned user and/or item embeddings, analogous to the GLUE benchmark in NLP domain. Our experimental results in these downstream tasks clearly show the comparative value of embeddings learned from our GUIM model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube