Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

On the efficacy of higher-order spectral clustering under weighted stochastic block models (2206.15379v2)

Published 30 Jun 2022 in stat.ME

Abstract: Higher-order structures of networks, namely, small subgraphs of networks (also called network motifs), are widely known to be crucial and essential to the organization of networks. There has been a few work studying the community detection problem -- a fundamental problem in network analysis, at the level of motifs. In particular, higher-order spectral clustering has been developed, where the notion of motif adjacency matrix is introduced as the input of the algorithm. However, it remains largely unknown that how higher-order spectral clustering works and when it performs better than its edge-based counterpart. To elucidate these problems, we investigate higher-order spectral clustering from a statistical perspective. In particular, we theoretically study the clustering performance of higher-order spectral clustering under a weighted stochastic block model and compare the resulting bounds with the corresponding results of edge-based spectral clustering. It turns out that when the network is dense with weak signal of weights, higher-order spectral clustering can really lead to the performance gain in clustering. We also use simulations and real data experiments to support the findings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.