Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Classification of Gravitational Waves in Higher-dimensional Space-time and Possibility of Observation (2206.15333v2)

Published 30 Jun 2022 in gr-qc

Abstract: The direct detection of gravitational waves opens the possibility to test general relativity and its alternatives in the strong field regime. Here we focus on the test of the existence of extra dimensions. The classification of gravitational waves in metric gravity theories according to their polarizations in higher-dimensional space-time and the possible observation of these polarizations in 3-dimensional subspace are discussed in this work. And we show that the difference in the response of gravitational waves in detectors with and without extra dimensions can serve as evidence for the existence of extra dimensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. B. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116(6):061102, 2016.
  2. B. P. Abbott et al. Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116(24):241103, 2016.
  3. R. Abbott et al. Gwtc-3: Compact binary coalescences observed by ligo and virgo during the second part of the third observing run. arXiv preprint arXiv:2111.03606, 2021.
  4. B. P. Abbott et al. Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119(16):161101, 2017.
  5. P. Creminelli and F. Vernizzi. Dark energy after gw170817 and grb170817a. Phys. Rev. Lett., 119(25):251302, 2017.
  6. J. Sakstein and B. Jain. Implications of the neutron star merger gw170817 for cosmological scalar-tensor theories. Phys. Rev. Lett., 119(25):251303, 2017.
  7. Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves. Eur. Phys. J. C, 78(9):1–7, 2018.
  8. Constraining alternative theories of gravity using gw150914 and gw151226. Phys. Rev. D, 94(12):124038, 2016.
  9. Tests of general relativity with gw150914. Phys. Rev. Lett., 116(22):221101, 2016.
  10. M. H. Goroff and A. Sagnotti. The ultraviolet behavior of einstein gravity. Nucl. Phys. B, 266(3-4):709–736, 1986.
  11. One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20:69–94, 1974.
  12. F. Zwicky. On the masses of nebulae and of clusters of nebulae. The Astrophysical Journal, 86:217, 1937.
  13. P. J. E. Peebles and B. Ratra. The cosmological constant and dark energy. Rev. Mod. Phys., 75(2):559, 2003.
  14. Modified gravity and cosmology. Phys. Rep., 513(1-3):1–189, 2012.
  15. T. Kaluza. On the unity problem of physics. physik. Mathemat. Klasse, pages 966–972, 1921.
  16. Do we live inside a domain wall? Phys. Lett. B, 125(2-3):136–138, 1983.
  17. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B, 429(3-4):263–272, 1998.
  18. L. Randall and R. Sundrum. Large mass hierarchy from a small extra dimension. Phys. Rev. Lett., 83(17):3370, 1999.
  19. L. Randall and R. Sundrum. An alternative to compactification. Phys. Rev. Lett., 83(23):4690, 1999.
  20. T. Jacobson and D. Mattingly. Einstein-aether waves. Phys. Rev. D, 70(2):024003, 2004.
  21. C. Brans and R. H. Dicke. Mach’s principle and a relativistic theory of gravitation. Phys. Rev., 124(3):925, 1961.
  22. G. W. Horndeski. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys., 10(6):363–384, 1974.
  23. J. D. Bekenstein. Relativistic gravitation theory for the modified newtonian dynamics paradigm. Phys. Rev. D, 70(8):083509, 2004.
  24. J. M. Ezquiaga and M. Zumalacárregui. Dark energy after gw170817: dead ends and the road ahead. Phys. Rev. Lett., 119(25):251304, 2017.
  25. D. E. Holz and S. Hughes. Using gravitational-wave standard sirens. The Astrophysical Journal, 629(1):15, 2005.
  26. C. Deffayet and K. Menou. Probing Gravity with Spacetime Sirens. Astrophys. J. Lett., 668:L143–L146, 2007.
  27. M. Khlopunov and D. V. Gal’tsov. Leakage of gravitational waves into an extra dimension in the DGP model. JCAP, 10:062, 2022.
  28. M. Khlopunov and D. V. Gal’tsov. Gravitational radiation from a binary system in odd-dimensional spacetime. JCAP, 04(04):014, 2022.
  29. Limits on the number of spacetime dimensions from gw170817. J. Cosmol. Astropart. Phys., 2018(07):048, 2018.
  30. Constraining cosmological extra dimensions with gravitational wave standard sirens: From theory to current and future multimessenger observations. Phys. Rev. D, 105(6):064061, 2022.
  31. M. Cantiello et al. A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations. Astrophys. J. Lett., 854(2):L31, 2018.
  32. 4d gravity on a brane in 5d minkowski space. Phys. Lett. B, 485(1-3):208–214, 2000.
  33. Detecting Vanishing Dimensions Via Primordial Gravitational Wave Astronomy. Phys. Rev. Lett., 106:101101, 2011.
  34. Dejan Stojkovic. Vanishing dimensions: A review. Mod. Phys. Lett. A, 28:1330034, 2013.
  35. Multibrane DGP model: Our universe as a stack of (2+1)-dimensional branes. Phys. Rev. D, 90(6):064031, 2014.
  36. H. Ishihara. Causality of the brane universe. Phys. Rev. Lett., 86(3):381, 2001.
  37. R. Caldwell and D. Langlois. Shortcuts in the fifth dimension. Phys. Lett. B, 511(2-4):129–135, 2001.
  38. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts. J. Cosmol. Astropart. Phys., 2017(02):039, 2017.
  39. Constraint on the radius of five-dimensional ds spacetime with gw170817 and grb 170817a. Phys. Rev. D, 101(10):104058, 2020.
  40. Brane-world extra dimensions in light of GW170817. Phys. Rev. D, 97(6):064039, 2018.
  41. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. D, 8(10):3308, 1973.
  42. The polarizations of gravitational waves. Universe, 4(8):85, 2018.
  43. S. Capozziello and C. Corda. Scalar gravitational waves from scalar-tensor gravity: production and response of interferometers. Int. J. Mod. Phys. D, 15(07):1119–1150, 2006.
  44. M. Maggiore and A. Nicolis. Detection strategies for scalar gravitational waves with interferometers and resonant spheres. Phys. Rev. D, 62(2):024004, 2000.
  45. Polarizations of gravitational waves in horndeski theory. Eur. Phys. J. C, 78(5):1–15, 2018.
  46. Polarization modes of gravitational waves in Palatini-Horndeski theory. Phys. Rev. D, 105(6):064035, 2022.
  47. Exact amplitudes of six polarization modes for gravitational waves. Phys. Rev. D, 99(12):124002, 2019.
  48. D. Andriot and G. L. Gómez. Signatures of extra dimensions in gravitational waves. J. Cosmol. Astropart. Phys., 2017(06):048, 2017.
  49. E. Alesci and G. Montani. Can gravitational waves be markers for an extra-dimension? Int. J. Mod. Phys. D, 14(06):923–931, 2005.
  50. Detection of gravitational wave mixed polarization with single space-based detectors. Phys. Rev. D, 105(10):104062, 2022.
  51. H. Omiya and N. Seto. Searching for anomalous polarization modes of the stochastic gravitational wave background with LISA and Taiji. Phys. Rev. D, 102(8):084053, 2020.
  52. Constraining the extra polarization modes of gravitational waves with double white dwarfs. Phys. Rev. D, 106(12):124017, 2022.
  53. Generalization of the geroch–held–penrose formalism to higher dimensions. Classical Quantum Gravity, 27(21):215010, 2010.
  54. P. Szekeres. The gravitational compass. J. Math. Phys., 6(9):1387–1391, 1965.
  55. J. Podolskỳ and R. Švarc. Interpreting spacetimes of any dimension using geodesic deviation. Phys. Rev. D, 85(4):044057, 2012.
  56. Scalar type gravitational wave emission from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer. Phys. Rev. D, 50:7304–7317, 1994.
  57. Sensitivity functions for space-borne gravitational wave detectors. Phys. Rev. D, 100(4):044042, 2019.
  58. J. W. Mei et al. The tianqin project: current progress on science and technology. Prog. Theor. Exp. Phys., 2021(5):05A107, 2021.
  59. É. Cartan. The theory of spinors. Courier Corporation, 2012.
  60. P. A. M. Dirac. The principles of quantum mechanics. Number 27. Oxford university press, 1981.
  61. R. Penrose. A spinor approach to general relativity. Ann. Phys., 10(2):171–201, 1960.
  62. E. Newman and R. Penrose. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3(3):566–578, 1962.
  63. R. Penrose and W. Rindler. Spinors and space-time: Volume 1, Two-spinor calculus and relativistic fields, volume 1. Cambridge University Press, 1984.
  64. R. Penrose and W. Rindler. Spinors and space-time: Volume 2, Spinor and twistor methods in space-time geometry, volume 2. Cambridge University Press, 1984.
  65. A space-time calculus based on pairs of null directions. J. Math. Phys., 14(7):874–881, 1973.
  66. Gravitational waves in full, non-linear general relativity. arXiv preprint arXiv:2201.11634, 2022.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube