Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A polyhedral approximation algorithm for recession cones of spectrahedral shadows (2206.15172v2)

Published 30 Jun 2022 in math.OC

Abstract: The intersection of an affine subspace with the cone of positive semidefinite matrices is called a spectrahedron. An orthogonal projection thereof is called a spectrahedral shadow or projected spectrahedron. Spectrahedra and their projections can be seen as a generalization of polyhedra. This article is concerned with the problem of approximating the recession cones of spectrahedra and spectrahedral shadows via polyhedral cones. We present two iterative algorithms to compute outer and inner approximations to within an arbitrary prescribed accuracy. The first algorithm is tailored to spectrahedra and is derived from polyhedral approximation algorithms for compact convex sets and relies on the fact, that an algebraic description of the recession cone is available. The second algorithm is designed for projected spectrahedra and does not require an algebraic description of the recession cone, which is in general more difficult to obtain. We prove correctness and finiteness of both algorithms and provide numerical examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube