Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomalies and Symmetry Fractionalization (2206.15118v3)

Published 30 Jun 2022 in hep-th and cond-mat.str-el

Abstract: We study ordinary, zero-form symmetry $G$ and its anomalies in a system with a one-form symmetry $\Gamma$. In a theory with one-form symmetry, the action of $G$ on charged line operators is not completely determined, and additional data, a fractionalization class, needs to be specified. Distinct choices of a fractionalization class can result in different values for the anomalies of $G$ if the theory has an anomaly involving $\Gamma$. Therefore, the computation of the 't Hooft anomaly for an ordinary symmetry $G$ generally requires first discovering the one-form symmetry $\Gamma$ of the physical system. We show that the multiple values of the anomaly for $G$ can be realized by twisted gauge transformations, since twisted gauge transformations shift fractionalization classes. We illustrate these ideas in QCD theories in diverse dimensions. We successfully match the anomalies of time-reversal symmetries in $2+1d$ gauge theories, across the different fractionalization classes, with previous conjectures for the infrared phases of such strongly coupled theories, and also provide new checks of these proposals. We perform consistency checks of recent proposals about two-dimensional adjoint QCD and present new results about the anomaly of the axial $\mathbb{Z}_{2N}$ symmetry in $3+1d$ ${\cal N}=1$ super-Yang-Mills. Finally, we study fractionalization classes that lead to 2-group symmetry, both in QCD-like theories, and in $2+1d$ $\mathbb{Z}_2$ gauge theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (121)
  1. G. Hooft, “Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,” in Recent developments in gauge theories, pp. 135–157. Springer, 1980.
  2. Y. Frishman, A. Schwimmer, T. Banks, and S. Yankielowicz, “The Axial Anomaly and the Bound State Spectrum in Confining Theories,” Nucl. Phys. B 177 (1981) 157–171.
  3. L. D. Faddeev and S. L. Shatashvili, “Algebraic and Hamiltonian Methods in the Theory of Nonabelian Anomalies,” Teor. Mat. Fiz. 60 (1984) 206–217.
  4. C. G. Callan, Jr. and J. A. Harvey, “Anomalies and Fermion Zero Modes on Strings and Domain Walls,” Nucl. Phys. B 250 (1985) 427–436.
  5. Z.-C. Gu and X.-G. Wen, “Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ𝜎\sigmaitalic_σ models and a special group supercohomology theory,” Phys. Rev. B 90 no. 11, (2014) 115141, arXiv:1201.2648 [cond-mat.str-el].
  6. X.-G. Wen, “Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders,” Phys. Rev. D 88 no. 4, (2013) 045013, arXiv:1303.1803 [hep-th].
  7. A. Kitaev, “Homotopy-theoretic approach to spt phases in action: Z16 classification of three-dimensional superconductors,” IPAM program Symmetry and Topology in Quantum Matter. 2015. Lecture notes available at ipam.ucla.edu.
  8. X. Chen, Y.-M. Lu, and A. Vishwanath, “Symmetry-protected topological phases from decorated domain walls,” Nature Communications 5 no. 1, (Mar, 2014) . https://doi.org/10.1038%2Fncomms4507.
  9. A. Kapustin, “Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology,” arXiv:1403.1467 [cond-mat.str-el].
  10. A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, “Fermionic Symmetry Protected Topological Phases and Cobordisms,” JHEP 12 (2015) 052, arXiv:1406.7329 [cond-mat.str-el].
  11. D. S. Freed and M. J. Hopkins, “Reflection positivity and invertible topological phases,” arXiv:1604.06527 [hep-th].
  12. C. Z. Xiong, “Minimalist approach to the classification of symmetry protected topological phases,” J. Phys. A 51 no. 44, (2018) 445001, arXiv:1701.00004 [cond-mat.str-el].
  13. D. Gaiotto and A. Kapustin, “Spin TQFTs and fermionic phases of matter,” Int. J. Mod. Phys. A 31 no. 28n29, (2016) 1645044, arXiv:1505.05856 [cond-mat.str-el].
  14. A. Kapustin and R. Thorngren, “Fermionic SPT phases in higher dimensions and bosonization,” JHEP 10 (2017) 080, arXiv:1701.08264 [cond-mat.str-el].
  15. D. Gaiotto and T. Johnson-Freyd, “Symmetry Protected Topological phases and Generalized Cohomology,” JHEP 05 (2019) 007, arXiv:1712.07950 [hep-th].
  16. R. Thorngren, “Anomalies and Bosonization,” Commun. Math. Phys. 378 no. 3, (2020) 1775–1816, arXiv:1810.04414 [cond-mat.str-el].
  17. Q.-R. Wang and Z.-C. Gu, “Construction and classification of symmetry protected topological phases in interacting fermion systems,” Phys. Rev. X 10 no. 3, (2020) 031055, arXiv:1811.00536 [cond-mat.str-el].
  18. K. Yonekura, “On the cobordism classification of symmetry protected topological phases,” Commun. Math. Phys. 368 no. 3, (2019) 1121–1173, arXiv:1803.10796 [hep-th].
  19. E. Witten and K. Yonekura, “Anomaly Inflow and the η𝜂\etaitalic_η-Invariant,” in The Shoucheng Zhang Memorial Workshop. 9, 2019. arXiv:1909.08775 [hep-th].
  20. C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP 02 (2019) 184, arXiv:1802.04790 [hep-th].
  21. F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
  22. M. B. Green and J. H. Schwarz, “Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory,” Phys. Lett. B 149 (1984) 117–122.
  23. P.-S. Hsin, W. Ji, and C.-M. Jian, “Exotic Invertible Phases with Higher-Group Symmetries,” arXiv:2105.09454 [cond-mat.str-el].
  24. A. Kapustin and R. Thorngren, “Higher symmetry and gapped phases of gauge theories,” arXiv:1309.4721 [hep-th].
  25. A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
  26. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  27. E. Sharpe, “Notes on generalized global symmetries in QFT,” Fortsch. Phys. 63 (2015) 659–682, arXiv:1508.04770 [hep-th].
  28. J. McGreevy, “Generalized Symmetries in Condensed Matter,” arXiv:2204.03045 [cond-mat.str-el].
  29. C. Córdova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in 2022 Snowmass Summer Study. 5, 2022. arXiv:2205.09545 [hep-th].
  30. Z. Bi and T. Senthil, “Adventure in Topological Phase Transitions in 3+1 -D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality,” Phys. Rev. X 9 no. 2, (2019) 021034, arXiv:1808.07465 [cond-mat.str-el].
  31. C. Choi, D. Delmastro, J. Gomis, and Z. Komargodski, “Dynamics of QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT with Rank-Two Quarks And Duality,” JHEP 03 (2020) 078, arXiv:1810.07720 [hep-th].
  32. T. Rudelius and S.-H. Shao, “Topological Operators and Completeness of Spectrum in Discrete Gauge Theories,” JHEP 12 (2020) 172, arXiv:2006.10052 [hep-th].
  33. B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius, and I. Valenzuela, “Non-invertible global symmetries and completeness of the spectrum,” JHEP 09 (2021) 203, arXiv:2104.07036 [hep-th].
  34. P.-S. Hsin, 2017. unpublished.
  35. S. Sachdev, C. Buragohain, and M. Vojta, “Quantum impurity in a nearly critical two-dimensional antiferromagnet,” Science 286 no. 5449, (1999) 2479–2482.
  36. M. Vojta, C. Buragohain, and S. Sachdev, “Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors,” Physical Review B 61 no. 22, (2000) 15152.
  37. S. Liu, H. Shapourian, A. Vishwanath, and M. A. Metlitski, “Magnetic impurities at quantum critical points: Large-n expansion and connections to symmetry-protected topological states,” Physical Review B 104 no. 10, (2021) 104201.
  38. G. Cuomo, Z. Komargodski, M. Mezei, and A. Raviv-Moshe, “Spin Impurities, Wilson Lines and Semiclassics,” arXiv:2202.00040 [hep-th].
  39. T. Senthil and M. P. A. Fisher, “Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory of electron fractionalization in strongly correlated systems,” Phys. Rev. B 62 (Sep, 2000) 7850–7881. https://link.aps.org/doi/10.1103/PhysRevB.62.7850.
  40. M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, “Symmetry Fractionalization, Defects, and Gauging of Topological Phases,” Phys. Rev. B 100 no. 11, (2019) 115147, arXiv:1410.4540 [cond-mat.str-el].
  41. X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski, “Anomalous Symmetry Fractionalization and Surface Topological Order,” Phys. Rev. X 5 no. 4, (2015) 041013, arXiv:1403.6491 [cond-mat.str-el].
  42. J. C. Teo, T. L. Hughes, and E. Fradkin, “Theory of twist liquids: Gauging an anyonic symmetry,” Annals of Physics 360 (Sep, 2015) 349–445. https://doi.org/10.1016%2Fj.aop.2015.05.012.
  43. N. Tarantino, N. H. Lindner, and L. Fidkowski, “Symmetry fractionalization and twist defects,” New Journal of Physics 18 no. 3, (Mar, 2016) 035006. https://doi.org/10.1088%2F1367-2630%2F18%2F3%2F035006.
  44. X. Chen, “Symmetry fractionalization in two dimensional topological phases,” Reviews in Physics 2 (Nov, 2017) 3–18. https://doi.org/10.1016%2Fj.revip.2017.02.002.
  45. M. Barkeshli and M. Cheng, “Relative Anomalies in (2+1)D Symmetry Enriched Topological States,” SciPost Phys. 8 (2020) 028, arXiv:1906.10691 [cond-mat.str-el].
  46. D. Aasen, P. Bonderson, and C. Knapp, “Characterization and Classification of Fermionic Symmetry Enriched Topological Phases,” arXiv:2109.10911 [cond-mat.str-el].
  47. D. Bulmash and M. Barkeshli, “Fermionic symmetry fractionalization in (2+1) dimensions,” Phys. Rev. B 105 no. 12, (2022) 125114, arXiv:2109.10913 [cond-mat.str-el].
  48. M. Cheng, P.-S. Hsin, and C.-M. Jian, “Gauging Lie group symmetry in (2+1)d topological phases,” arXiv:2205.15347 [cond-mat.str-el].
  49. P. Etingof, D. Nikshych, V. Ostrik, and E. Meir, “Fusion Categories and Homotopy Theory,” Quantum Topology 1 (2010) 209–273, arXiv:0909.3140 [math.QA].
  50. Z. Wan, J. Wang, and Y. Zheng, “Quantum 4d Yang-Mills Theory and Time-Reversal Symmetric 5d Higher-Gauge Topological Field Theory,” Phys. Rev. D 100 no. 8, (2019) 085012, arXiv:1904.00994 [hep-th].
  51. P.-S. Hsin and A. Turzillo, “Symmetry-enriched quantum spin liquids in (3 + 1)d𝑑ditalic_d,” JHEP 09 (2020) 022, arXiv:1904.11550 [cond-mat.str-el].
  52. P.-S. Hsin and S.-H. Shao, “Lorentz Symmetry Fractionalization and Dualities in (2+1)d,” SciPost Phys. 8 (2020) 018, arXiv:1909.07383 [cond-mat.str-el].
  53. F. Benini, P.-S. Hsin, and N. Seiberg, “Comments on global symmetries, anomalies, and duality in (2 + 1)d,” JHEP 04 (2017) 135, arXiv:1702.07035 [cond-mat.str-el].
  54. “Line Defect Quantum Numbers and Anomalies”.
  55. L. Fidkowski and A. Kitaev, “The effects of interactions on the topological classification of free fermion systems,” Phys. Rev. B 81 (2010) 134509, arXiv:0904.2197 [cond-mat.str-el].
  56. S. Elitzur, Y. Frishman, E. Rabinovici, and A. Schwimmer, “Origins of Global Anomalies in Quantum Mechanics,” Nucl. Phys. B 273 (1986) 93–108.
  57. J. Gomis and F. Passerini, “Holographic Wilson Loops,” JHEP 08 (2006) 074, arXiv:hep-th/0604007.
  58. D. Delmastro, D. Gaiotto, and J. Gomis, “Global anomalies on the Hilbert space,” JHEP 11 (2021) 142, arXiv:2101.02218 [hep-th].
  59. Z. Komargodski, A. Sharon, R. Thorngren, and X. Zhou, “Comments on Abelian Higgs Models and Persistent Order,” SciPost Phys. 6 no. 1, (2019) 003, arXiv:1705.04786 [hep-th].
  60. S. Hellerman, A. Henriques, T. Pantev, E. Sharpe, and M. Ando, “Cluster decomposition, T-duality, and gerby CFT’s,” Adv. Theor. Math. Phys. 11 no. 5, (2007) 751–818, arXiv:hep-th/0606034.
  61. D. G. Robbins, E. Sharpe, and T. Vandermeulen, “Anomaly resolution via decomposition,” Int. J. Mod. Phys. A 36 no. 29, (2021) 2150220, arXiv:2107.13552 [hep-th].
  62. E. Sharpe, “An introduction to decomposition,” arXiv:2204.09117 [hep-th].
  63. D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg, “Theta, Time Reversal, and Temperature,” JHEP 05 (2017) 091, arXiv:1703.00501 [hep-th].
  64. Y.-H. Lin and S.-H. Shao, “Anomalies and Bounds on Charged Operators,” Phys. Rev. D 100 no. 2, (2019) 025013, arXiv:1904.04833 [hep-th].
  65. C. Córdova, K. Ohmori, S.-H. Shao, and F. Yan, “Decorated ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry defects and their time-reversal anomalies,” Phys. Rev. D 102 no. 4, (2020) 045019, arXiv:1910.14046 [hep-th].
  66. I. Hason, Z. Komargodski, and R. Thorngren, “Anomaly Matching in the Symmetry Broken Phase: Domain Walls, CPT, and the Smith Isomorphism,” SciPost Phys. 8 no. 4, (2020) 062, arXiv:1910.14039 [hep-th].
  67. J. Boorstein and D. Kutasov, “Symmetries and mass splittings in QCD in two-dimensions coupled to adjoint fermions,” Nucl. Phys. B 421 (1994) 263–277, arXiv:hep-th/9401044.
  68. D. J. Gross, I. R. Klebanov, A. V. Matytsin, and A. V. Smilga, “Screening versus confinement in (1+1)-dimensions,” Nucl. Phys. B 461 (1996) 109–130, arXiv:hep-th/9511104.
  69. A. Cherman, T. Jacobson, Y. Tanizaki, and M. Ünsal, “Anomalies, a mod 2 index, and dynamics of 2d adjoint QCD,” SciPost Phys. 8 no. 5, (2020) 072, arXiv:1908.09858 [hep-th].
  70. Z. Komargodski, K. Ohmori, K. Roumpedakis, and S. Seifnashri, “Symmetries and strings of adjoint QCD22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 03 (2021) 103, arXiv:2008.07567 [hep-th].
  71. R. Dempsey, I. R. Klebanov, and S. S. Pufu, “Exact symmetries and threshold states in two-dimensional models for QCD,” JHEP 10 (2021) 096, arXiv:2101.05432 [hep-th].
  72. M. Nguyen, Y. Tanizaki, and M. Ünsal, “Noninvertible 1-form symmetry and Casimir scaling in 2D Yang-Mills theory,” Phys. Rev. D 104 no. 6, (2021) 065003, arXiv:2104.01824 [hep-th].
  73. A. V. Smilga, “A comment on instantons and their fermion zero modes in adjoint QCD22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” SciPost Phys. 10 no. 6, (2021) 152, arXiv:2104.06266 [hep-th].
  74. D. Delmastro, J. Gomis, and M. Yu, “Infrared phases of 2d QCD,” arXiv:2108.02202 [hep-th].
  75. A. Cherman, T. Jacobson, and M. Neuzil, “Universal Deformations,” SciPost Phys. 12 (2022) 116, arXiv:2111.00078 [hep-th].
  76. A. Cherman, T. Jacobson, M. Shifman, M. Unsal, and A. Vainshtein, “Four-fermion deformations of the massless Schwinger model and confinement,” arXiv:2203.13156 [hep-th].
  77. L. Fidkowski, X. Chen, and A. Vishwanath, “Non-abelian topological order on the surface of a 3d topological superconductor from an exactly solved model,”. https://arxiv.org/abs/1305.5851.
  78. C. Wang and T. Senthil, “Interacting fermionic topological insulators/superconductors in three dimensions,” Physical Review B 89 no. 19, (May, 2014) . https://doi.org/10.1103%2Fphysrevb.89.195124.
  79. M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath, “Interaction effects on 3d topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic kramers doublets,” 2014. https://arxiv.org/abs/1406.3032.
  80. A. Y. Kitaev, “Homotopy-theoretic approach to spt phases in action: ℤ16subscriptℤ16\mathbb{Z}_{16}blackboard_Z start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT classification of three-dimensional superconductors.” Lecture notes available at http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015, 2015.
  81. P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 no. 3, (2019) 039, arXiv:1812.04716 [hep-th].
  82. W. Browder, “The Kervaire Invariant of Framed Manifolds and its Generalization,” Annals of Mathematics 90 no. 1, (1969) 157–186. http://www.jstor.org/stable/1970686.
  83. E. H. Brown, “Generalizations of the Kervaire Invariant,” Annals of Mathematics 95 no. 2, (1972) 368–383. http://www.jstor.org/stable/1970804.
  84. Z. Wan and J. Wang, “Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory,” Ann. Math. Sci. Appl. 4 no. 2, (2019) 107–311, arXiv:1812.11967 [hep-th].
  85. L. Bhardwaj, M. Bullimore, A. E. V. Ferrari, and S. Schafer-Nameki, “Anomalies of Generalized Symmetries from Solitonic Defects,” arXiv:2205.15330 [hep-th].
  86. Annals of mathematics studies. Princeton University Press, 1974. https://books.google.com/books?id=5zQ9AFk1i4EC.
  87. Cambridge University Press, 1991.
  88. J. Gomis, Z. Komargodski, and N. Seiberg, “Phases Of Adjoint QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT And Dualities,” SciPost Phys. 5 no. 1, (2018) 007, arXiv:1710.03258 [hep-th].
  89. C. Cordova, P.-S. Hsin, and N. Seiberg, “Global Symmetries, Counterterms, and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups,” SciPost Phys. 4 no. 4, (2018) 021, arXiv:1711.10008 [hep-th].
  90. C. Córdova, P.-S. Hsin, and N. Seiberg, “Time-Reversal Symmetry, Anomalies, and Dualities in (2+1)d𝑑ditalic_d,” SciPost Phys. 5 no. 1, (2018) 006, arXiv:1712.08639 [cond-mat.str-el].
  91. C. Choi, “Phases of Two Adjoints QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT And a Duality Chain,” JHEP 04 (2020) 006, arXiv:1910.05402 [hep-th].
  92. D. Delmastro and J. Gomis, “Domain walls in 4d𝒩𝒩\mathcal{N}caligraphic_N = 1 SYM,” JHEP 03 (2021) 259, arXiv:2004.11395 [hep-th].
  93. N. Lohitsiri and T. Sulejmanpasic, “Comments on QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT and anomalies with fundamental and adjoint matter,” arXiv:2205.07825 [hep-th].
  94. A. Armoni, “Dualities of Adjoint QCD33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT from Branes,” arXiv:2205.15706 [hep-th].
  95. M. Cheng, “Microscopic theory of surface topological order for topological crystalline superconductors,” Physical Review Letters 120 no. 3, (Jan, 2018) . https://doi.org/10.1103%2Fphysrevlett.120.036801.
  96. I. B. Frenkel, “Representations of affine lie algebras, hecke modular forms and korteweg—de vries type equations,” in Lie Algebras and Related Topics, D. Winter, ed., pp. 71–110. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982.
  97. PhD thesis, 2022. http://hdl.handle.net/10012/18352.
  98. Y. Tachikawa, “On gauging finite subgroups,” SciPost Phys. 8 no. 1, (2020) 015, arXiv:1712.09542 [hep-th].
  99. C.-T. Hsieh, “Discrete gauge anomalies revisited,” arXiv:1808.02881 [hep-th].
  100. M. Guo, K. Ohmori, P. Putrov, Z. Wan, and J. Wang, “Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms,” Commun. Math. Phys. 376 no. 2, (2020) 1073–1154, arXiv:1812.11959 [hep-th].
  101. J. Davighi and N. Lohitsiri, “The algebra of anomaly interplay,” SciPost Phys. 10 no. 3, (2021) 074, arXiv:2011.10102 [hep-th].
  102. L. Alvarez-Gaume, S. Della Pietra, and G. W. Moore, “Anomalies and Odd Dimensions,” Annals Phys. 163 (1985) 288.
  103. A. Bilal, “Lectures on Anomalies,” arXiv:0802.0634 [hep-th].
  104. S. L. Adler, “Axial-vector vertex in spinor electrodynamics,” Phys. Rev. 177 (Jan, 1969) 2426–2438. https://link.aps.org/doi/10.1103/PhysRev.177.2426.
  105. J. S. Bell and R. Jackiw, “A pcac puzzle: π𝜋\piitalic_π0→γ𝛾\gammaitalic_γγ𝛾\gammaitalic_γ in the σ𝜎\sigmaitalic_σ-model,” Il Nuovo Cimento A (1965-1970) 60 no. 1, (Mar, 1969) 47–61. https://doi.org/10.1007/BF02823296.
  106. B. S. Acharya and C. Vafa, “On domain walls of N=1 supersymmetric Yang-Mills in four-dimensions,” arXiv:hep-th/0103011.
  107. J. A. Damia, R. Argurio, and L. Tizzano, “Continuous Generalized Symmetries in Three Dimensions,” arXiv:2206.14093 [hep-th].
  108. C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin, “Topological Defect Lines and Renormalization Group Flows in Two Dimensions,” JHEP 01 (2019) 026, arXiv:1802.04445 [hep-th].
  109. Y. Choi, C. Córdova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-Invertible Duality Defects in 3+1 Dimensions,” arXiv:2111.01139 [hep-th].
  110. J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, (2022) 111601, arXiv:2111.01141 [hep-th].
  111. M. Nguyen, Y. Tanizaki, and M. Ünsal, “Semi-Abelian gauge theories, non-invertible symmetries, and string tensions beyond N𝑁Nitalic_N-ality,” JHEP 03 (2021) 238, arXiv:2101.02227 [hep-th].
  112. K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
  113. L. Bhardwaj, L. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-Invertible Higher-Categorical Symmetries,” arXiv:2204.06564 [hep-th].
  114. Y. Choi, C. Córdova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025 [hep-th].
  115. Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Global Symmetries in the Standard Model,” arXiv:2205.05086 [hep-th].
  116. C. Córdova and K. Ohmori, “Non-Invertible Chiral Symmetry and Exponential Hierarchies,” arXiv:2205.06243 [hep-th].
  117. M. Barkeshli, Y.-A. Chen, P.-S. Hsin, and N. Manjunath, “Classification of (2+1)D invertible fermionic topological phases with symmetry,” arXiv:2109.11039 [cond-mat.str-el].
  118. D. Bulmash and M. Barkeshli, “Anomaly cascade in (2+1)-dimensional fermionic topological phases,” Phys. Rev. B 105 no. 15, (2022) 155126, arXiv:2109.10922 [cond-mat.str-el].
  119. A. Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3 (Feb, 2013) 011016. https://link.aps.org/doi/10.1103/PhysRevX.3.011016.
  120. C. Wang and T. Senthil, “Boson topological insulators: A window into highly entangled quantum phases,” Phys. Rev. B 87 (Jun, 2013) 235122. https://link.aps.org/doi/10.1103/PhysRevB.87.235122.
  121. F. Apruzzi, L. Bhardwaj, D. S. W. Gould, and S. Schafer-Nameki, “2-Group symmetries and their classification in 6d,” SciPost Phys. 12 no. 3, (2022) 098, arXiv:2110.14647 [hep-th].
Citations (34)

Summary

We haven't generated a summary for this paper yet.