Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lieb-Schultz-Mattis anomalies as obstructions to gauging (non-on-site) symmetries (2308.05151v3)

Published 9 Aug 2023 in cond-mat.str-el, hep-lat, and hep-th

Abstract: We study 't Hooft anomalies of global symmetries in 1+1d lattice Hamiltonian systems. We consider anomalies in internal and lattice translation symmetries. We derive a microscopic formula for the "anomaly cocycle" using topological defects implementing twisted boundary conditions. The anomaly takes value in the cohomology group $H3(G,U(1)) \times H2(G,U(1))$. The first factor captures the anomaly in the internal symmetry group $G$, and the second factor corresponds to a generalized Lieb-Schultz-Mattis anomaly involving $G$ and lattice translation. We present a systematic procedure to gauge internal symmetries (that may not act on-site) on the lattice. We show that the anomaly cocycle is the obstruction to gauging the internal symmetry while preserving the lattice translation symmetry. As an application, we construct anomaly-free chiral lattice gauge theories. We demonstrate a one-to-one correspondence between (locality-preserving) symmetry operators and topological defects, which is essential for the results we prove. We also discuss the generalization to fermionic theories. Finally, we construct non-invertible lattice translation symmetries by gauging internal symmetries with a Lieb-Schultz-Mattis anomaly.

Citations (15)

Summary

We haven't generated a summary for this paper yet.