Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A Ray-Knight theorem for $\nablaφ$ interface models and scaling limits (2206.14805v2)

Published 29 Jun 2022 in math.PR, math-ph, and math.MP

Abstract: We introduce a natural measure on bi-infinite random walk trajectories evolving in a time-dependent environment driven by the Langevin dynamics associated to a gradient Gibbs measure with convex potential. We derive an identity relating the occupation times of the Poissonian cloud induced by this measure to the square of the corresponding gradient field, which - generically - is not Gaussian. In the quadratic case, we recover a well-known generalization of the second Ray-Knight theorem. We further determine the scaling limits of the various objects involved in dimension 3, which are seen to exhibit homogenization. In particular, we prove that the renormalized square of the gradient field converges under appropriate rescaling to the Wick-ordered square of a Gaussian free field on $\mathbb{R}3$ with suitable diffusion matrix, thus extending a celebrated result of Naddaf and Spencer regarding the scaling limit of the field itself.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.