Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

aSTDP: A More Biologically Plausible Learning (2206.14137v1)

Published 22 May 2022 in cs.NE and cs.CV

Abstract: Spike-timing dependent plasticity in biological neural networks has been proven to be important during biological learning process. On the other hand, artificial neural networks use a different way to learn, such as Back-Propagation or Contrastive Hebbian Learning. In this work we introduce approximate STDP, a new neural networks learning framework more similar to the biological learning process. It uses only STDP rules for supervised and unsupervised learning, every neuron distributed learn patterns and don' t need a global loss or other supervised information. We also use a numerical way to approximate the derivatives of each neuron in order to better use SDTP learning and use the derivatives to set a target for neurons to accelerate training and testing process. The framework can make predictions or generate patterns in one model without additional configuration. Finally, we verified our framework on MNIST dataset for classification and generation tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.