Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MSTDP: A More Biologically Plausible Learning (1912.00009v2)

Published 29 Nov 2019 in cs.NE, cs.LG, q-bio.NC, and stat.ML

Abstract: Spike-timing dependent plasticity (STDP) which observed in the brain has proven to be important in biological learning. On the other hand, artificial neural networks use a different way to learn, such as Back-Propagation or Contrastive Hebbian Learning. In this work, we propose a new framework called mstdp that learn almost the same way biological learning use, it only uses STDP rules for supervised and unsupervised learning and don' t need a global loss or other supervise information. The framework works like an auto-encoder by making each input neuron also an output neuron. It can make predictions or generate patterns in one model without additional configuration. We also brought a new iterative inference method using momentum to make the framework more efficient, which can be used in training and testing phases. Finally, we verified our framework on MNIST dataset for classification and generation task.

Summary

We haven't generated a summary for this paper yet.