Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beating Greedy Matching in Sublinear Time (2206.13057v1)

Published 27 Jun 2022 in cs.DS

Abstract: We study sublinear time algorithms for estimating the size of maximum matching in graphs. Our main result is a $(\frac{1}{2}+\Omega(1))$-approximation algorithm which can be implemented in $O(n{1+\epsilon})$ time, where $n$ is the number of vertices and the constant $\epsilon > 0$ can be made arbitrarily small. The best known lower bound for the problem is $\Omega(n)$, which holds for any constant approximation. Existing algorithms either obtain the greedy bound of $\frac{1}{2}$-approximation [Behnezhad FOCS'21], or require some assumption on the maximum degree to run in $o(n2)$-time [Yoshida, Yamamoto, and Ito STOC'09]. We improve over these by designing a less "adaptive" augmentation algorithm for maximum matching that might be of independent interest.

Citations (11)

Summary

We haven't generated a summary for this paper yet.