Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAT: Self-adaptive training for fashion compatibility prediction (2206.12622v1)

Published 25 Jun 2022 in cs.CV

Abstract: This paper presents a self-adaptive training (SAT) model for fashion compatibility prediction. It focuses on the learning of some hard items, such as those that share similar color, texture, and pattern features but are considered incompatible due to the aesthetics or temporal shifts. Specifically, we first design a method to define hard outfits and a difficulty score (DS) is defined and assigned to each outfit based on the difficulty in recommending an item for it. Then, we propose a self-adaptive triplet loss (SATL), where the DS of the outfit is considered. Finally, we propose a very simple conditional similarity network combining the proposed SATL to achieve the learning of hard items in the fashion compatibility prediction. Experiments on the publicly available Polyvore Outfits and Polyvore Outfits-D datasets demonstrate our SAT's effectiveness in fashion compatibility prediction. Besides, our SATL can be easily extended to other conditional similarity networks to improve their performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.