Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theme-Matters: Fashion Compatibility Learning via Theme Attention (1912.06227v3)

Published 12 Dec 2019 in cs.CV

Abstract: Fashion compatibility learning is important to many fashion markets such as outfit composition and online fashion recommendation. Unlike previous work, we argue that fashion compatibility is not only a visual appearance compatible problem but also a theme-matters problem. An outfit, which consists of a set of fashion items (e.g., shirt, suit, shoes, etc.), is considered to be compatible for a "dating" event, yet maybe not for a "business" occasion. In this paper, we aim at solving the fashion compatibility problem given specific themes. To this end, we built the first real-world theme-aware fashion dataset comprising 14K around outfits labeled with 32 themes. In this dataset, there are more than 40K fashion items labeled with 152 fine-grained categories. We also propose an attention model learning fashion compatibility given a specific theme. It starts with a category-specific subspace learning, which projects compatible outfit items in certain categories to be close in the subspace. Thanks to strong connections between fashion themes and categories, we then build a theme-attention model over the category-specific embedding space. This model associates themes with the pairwise compatibility with attention, and thus compute the outfit-wise compatibility. To the best of our knowledge, this is the first attempt to estimate outfit compatibility conditional on a theme. We conduct extensive qualitative and quantitative experiments on our new dataset. Our method outperforms the state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jui-Hsin Lai (7 papers)
  2. Bo Wu (144 papers)
  3. Xin Wang (1308 papers)
  4. Dan Zeng (54 papers)
  5. Tao Mei (209 papers)
  6. Jingen Liu (22 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.