Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indecision Trees: Learning Argument-Based Reasoning under Quantified Uncertainty (2206.12252v2)

Published 23 Jun 2022 in cs.LG, cs.AI, and cs.LO

Abstract: Using Machine Learning systems in the real world can often be problematic, with inexplicable black-box models, the assumed certainty of imperfect measurements, or providing a single classification instead of a probability distribution. This paper introduces Indecision Trees, a modification to Decision Trees which learn under uncertainty, can perform inference under uncertainty, provide a robust distribution over the possible labels, and can be disassembled into a set of logical arguments for use in other reasoning systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. Grzymala-Busse, J. W. and Rzasa, W., “A local version of the mlem2 algorithm for rule induction,” Fundamenta Informaticae 100(1-4), 99–116 (2010).
  2. Cervone, G., Franzese, P., and Keesee, A. P., “Algorithm quasi-optimal (aq) learning,” Wiley Interdisciplinary Reviews: Computational Statistics 2(2), 218–236 (2010).
  3. Hühn, J. and Hüllermeier, E., “Furia: an algorithm for unordered fuzzy rule induction,” Data Mining and Knowledge Discovery 19(3), 293–319 (2009).
  4. Cohen, W. W., “Learning to classify english text with ilp methods,” Advances in inductive logic programming 32, 124–143 (1995).
  5. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J., “Classification and regression trees. belmont, ca: Wadsworth,” International Group 432, 151–166 (1984).
  6. Quinlan, J. R., “Induction of decision trees,” Machine learning 1(1), 81–106 (1986).
  7. Quinlan, J., “Program for machine learning,” C4. 5 (1993).
  8. Jabbar, A. M., “Rule induction with iterated local search,” International Journal of Intelligent Engineering and Systems 14(4), 289–298 (2021).
  9. Parpinelli, R. S., Lopes, H. S., and Freitas, A. A., “Data mining with an ant colony optimization algorithm,” IEEE transactions on evolutionary computation 6(4), 321–332 (2002).
  10. Ross Quinlan, J., “C4. 5: programs for machine learning,” Mach. Learn 16(3), 235–240 (1993).
  11. Shannon, C. E., “A mathematical theory of communication,” The Bell system technical journal 27(3), 379–423 (1948).

Summary

We haven't generated a summary for this paper yet.