Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algebra of Observables for de Sitter Space (2206.10780v5)

Published 22 Jun 2022 in hep-th, gr-qc, math-ph, math.MP, and math.OA

Abstract: We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II$1$. There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II$_1$ algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy $S{\text{gen}}=(A/4G_N)+S_{\text{out}}$. An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II$_1$ algebra.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. J. D. Bekenstein, “Black Holes and the Second Law,” Lett. Nuovo Cim. 4 (1972) 737-740.
  2. S. W. Hawking, “Particle Clreation By Black Holes,” Commun. Math. Phys. 43 (1975) 199-220.
  3. G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D15 (1977) 2738-2751.
  4. R. Figari, R. Hoegh-Krohn, and C. R. Nappi, “Interacting Relativistic Boson Fields in the De Sitter Universe With Two Space-Time Dimensions,” Commun. Math. Phys. 44 (1975) 265-278.
  5. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “The Entropy of Hawking Radiation,” Rev. Mod. Phys. 93 (2021) 035002, arXiv:2006.06872.
  6. R. Bousso, “Positive Vacuum Energy and the N𝑁Nitalic_N Bound,” JHEP 11 (2000) 038, hep-th/0012052.
  7. R. Bousso, “Bekenstein Bounds in de Sitter and Flat Space,” JHEP 04 (2001) 035, hep-th/0010252.
  8. T. Banks, “Cosmological Breaking of Supersymmetry? Or Little Lambda Goes Back to the Future, II,” Int. J. Mod. Phys. A16 (2001) 910-921, hep-th/0007146.
  9. T. Banks and W. Fischler, “M𝑀Mitalic_M-Theory Observables For Cosmological Spacetimes,” arXiv:hep-th/0102077.
  10. T. Banks, “More Thoughts on the Quantum Theory of Stable de Sitter Space,” arXiv:hep-th/0503066.
  11. T. Banks, B. Fiol, and A. Morisse, “Towards a Quantum Theory of de Sitter Space,” arXiv:hep-th/0609062.
  12. T. Banks and W. Fischler, “The Holographic Model Of Cosmology,” arXiv:1806.01749.
  13. L. Susskind, “De Sitter Holography: Fluctuations, Anomalous Symmetry, and Wormholes,” Universe 7 (2021) 464, arXiv:2106.03964.
  14. L. Susskind, “Black Holes Hint Towards De Sitter-Matrix Theory,” arXiv:2109.01322.
  15. K. Maede, T. Koike, M. Narita, A. Ishibashi, “Upper bound for entropy in asymptotically de Sitter space-time,” Phys. Rev. D 57(6) (1998) 3503.
  16. N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar field in de Sitter space-time,” Annales de l’Institut Henri Poincaré A IX (1968) 109.
  17. C. Schomblond and P. Spindel, “Conditions d’unicité pour le propagateur Δ1⁢(x;y)subscriptΔ1𝑥𝑦\Delta_{1}(x;y)roman_Δ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ; italic_y ) du champ scalaire dans l’univers de de Sitter,” Annales de l’Institut Henri Poincaré A XXV (1976) 67.
  18. T. S. Bunch and P. Davies, “Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting,” Proc. Roy. Soc. London A360 (1978) 117-34.
  19. E. Mottola, “Particle Creation in de Sitter Space,” Phys. Rev. D31 (1985) 754.
  20. B. Allen, “Vacuum States in de Sitter Space,” Phys. Rev. D32 (1985) 3136.
  21. D. Anninos, F. Denef, Y. T. A. Law, Z. Sun, “Quantum de Sitter Horizon Entropy from Quasicanonical Bulk, Edge, Sphere and Topological String Partition Functions,” arXiv:2009.12464.
  22. X. Dong, E. Silverstein, and G. Torroba, “De Sitter Holography and Entanglement Entropy,” arXiv:1804.08623.
  23. H. Lin and L. Susskind, “Infinite Temperature’s Not So Hot,” arXiv:2206.01083.
  24. S. Leutheusser and H. Liu, “Causal Connectability Between Quantum Systems and the Black Hole Interior in Holographic Duality,” arXiv:2110.05497.
  25. S. Leutheusser and H. Liu, “Emergent Times in Holographic Duality,” arXiv:2112.12156.
  26. E. Witten, “Gravity and the Crossed Product,” arXiv:2112.12828.
  27. R. Sorkin, “On The Entropy of the Vacuum Outside a Horizon,” in B. Bertotti, F. de Felice and A. Pascolini, eds., Tenth International Conference on General Relativity and Gravitation (Padova, July 4-9, 1983), Contributed Papers, vol. II, pp. 734-736 (Roma, Consiglio Nazionale Delle Ricerche, 1983), available at arXiv:1402.3589.
  28. L. Bombelli, R. K. Koul, Joohan Lee, and R. Sorkin, “Quantum Source of Entropy for Black Holes,” Phys. Rev. D34 (1986) 373-383.
  29. H. Araki, “Type of von Neumann Algebras Associated to the Free Field,” Prog. Theoret. Phys. 32 (1964) 956.
  30. I. E. Segal, “A Note On The Concept Of Entropy,” J. Math. Mech. 9 (1960) 623-629.
  31. R. Longo and E. Witten, “A Note On Continuous Entropy,” arXiv:2202.03357, to appear in Pure and Applied Mathematics Quarterly.
  32. A. Wall, “A Proof of the Generalized Second Law For Rapidly Changing Fields and Arbitrary Horizon Slices,” Phys. Rev. D85 (2012) 104049, arXiv:1105.3445.
  33. A. Higuchi, “Quantum linearization instabilities of de Sitter space-time. 1,” Class. Quant. Grav. 8 (1991) 1961 (1991), “Quantum linearization instabilities of de Sitter space-time. 2,” Class. Quant. Grav. 8 (1991) 1983.
  34. D. Marolf and I. A. Morrison, “Group Averaging for de Sitter Free Fields,” arXiv:0810.5163.
  35. O. Yu. Shvedov, “On Correspondence of BRST-BV, Dirac, and Refined Algebraic Quantizations of Constrained Systems,” arXiv:hep-th/0111270.
  36. E. Witten, “Why Does Quantum Field Theory in Curved Spacetime Make Sense? And What Happens to the Algebra of Observables in the Thermodynamic Limit?” arXiv:2112.11614.
  37. J. B. Hartle and S. W. Hawking, “Path Integral Derivation of Black Hole Radiance,” Phys. Rev. D13 (1976) 2188-2203.
  38. W. Israel, “Thermo-field Dynamics Of Black Holes,” Phys. Lett. 57 (1976) 107-110.
  39. W. G. Unruh, “Notes on Black-Hole Evaporation,” Phys. Rev. D14 (1976) 870-892.
  40. J. Bisognano and E. H. Wichmann, “On The Duality Condition For Quantum Fields,” J. Math. Phys. 17 (1976) 303-21.
  41. G. L. Sewell, “Quantum Fields On Manifolds: PCT and Gravitationally Induced Thermal States,” Ann. Phys. 141 (1982) 201-24.
  42. H. J. Borchers, “Uber die Vollständigkeit lorentzinvarianter Felder in einer zeitartigen Röhre,” Nuovo Cimento 19 (1961) 787.
  43. H. Araki, “A Generalization Of Borchers Theorem,” Helv. Phys. Acta 36 (1963) 132-139.
  44. A. Strohmaier, “On The Local Structure Of The Klein-Gordon Field On Curved Spacetimes,” Lett. Math. Phys. 54 (2000) 249-61, arXiv:math-ph/0008043.
  45. M. Takesaki, “Duality for Crossed Products and the Structure of von Neumann Algebras of Type III,” Acta Mathematica 131 (1973) 249-310.
  46. V. F. R. Jones, “Lectures on Von Neumann Algebras,” available at https://my.vanderbilt.edu/jonesvf/files/2020/10/vonNeumann2015.pdf.
  47. N. Lashkari, “Modular Zero Modes and the Flow of States of QFT,” JHEP 04 (2021) 189, arXiv:1911.11153.
  48. E. Witten, “Entanglement Properties of Quantum Field Theory,” Rev. Mod. Phys. 90 (2018), 045003, arXiv:1803.04993.
  49. H. Araki, “Relative Entropy of States of von Neumann Algebras,” Publ. RIMS, Kyoto Univ. 11 (1976) 809-33.
  50. D. Jafferis and D. Harlow, “The Factorization Problem in JT Gravity,” JHEP 02 (2020) 177, arXiv:1804.01801.
  51. M. Henneaux, “Lectures on the Antifield-BRST Formalism for Gauge Theories,” Nucl. Phys. B18A (1990) 47-106.
  52. D. Marolf, “Group Averaging and Refined Algebraic Quantization: Where Are We Now?”
Citations (178)

Summary

  • The paper presents a Type II₁ von Neumann algebra to define observables in de Sitter space and establish a well-defined entropy concept.
  • It employs gravitational dressing of operators to incorporate observer degrees of freedom and address the absence of spatial infinity.
  • The study links the de Sitter horizon entropy to generalized quantum entropy, offering insights applicable to black hole thermodynamics.

An Algebra of Observables for de Sitter Space

The paper entitled "An Algebra of Observables for de Sitter Space" by Venkatesa Chandrasekaran, Roberto Longo, Geoff Penington, and Edward Witten presents a refined mathematical framework to describe observables in de Sitter space via von Neumann algebras. It critically examines the nature of entropy and observable algebras in both the context of de Sitter space and black holes, with primary focus on static patches and gravitational dressing of operators.

The authors present a framework centered around Type II1_1 von Neumann algebras to describe the algebra of observables in a static patch of de Sitter space. This is a significant aspect because traditional approaches using local algebras in quantum field theory without gravity are generally of Type III, leading to ultraviolet divergences and posing challenges in defining entropies. Conversely, Type II1_1 algebras feature a well-defined notion of entropy, which adjusts for divergences by performing a form of renormalization.

Key Contributions

  1. Definition of a Type II1_1 Algebra:
    • The paper introduces a Type II1_1 von Neumann algebra that describes observables for an observer within a static patch. This algebra accommodates gravitational dressing constraints and other properties intrinsic to de Sitter space quantum fields. The authors identify that there's a natural entropy notion with this algebra, and notably, a maximum entropy state that depicts empty de Sitter space.
  2. Gravitational Dressing:
    • To circumvent the absence of a spatial infinity in de Sitter space, the observables are "gravitationally dressed" to worldlines of observers, requiring an ancillary system that represents the observer's own degrees of freedom. This method is expanded upon by integrating an additional observer into the framework in the paper's exploration of Hilbert spaces and algebra extensions.
  3. Entropy Interpretation:
    • The entropy of the state corresponding to this algebra aligns with the expected generalized entropy up to an additive renormalization constant. The paper implies that the de Sitter horizon's entropy handles quantum effects and observers effectively without directly summing up classical horizon areas and external entropy contributions.
  4. Black Holes and Hubbard Algebra Realism:
    • The paper investigates similarities with black hole horizons, revealing how the algebraic structures developed for de Sitter space parallel those used in black hole theories, pointing toward broader applicability. The paper assures alignment by reformulating aspects of black hole thermodynamics with Type II_\infty von Neumann algebras.
  5. The BRST Framework:
    • Elaborating on a Hilbert space for quantum fields and gravity, it explores the role of BRST (Becchi-Rouet-Stora-Tyutin) quantization for imposing gauge constraints, thereby presenting the dynamics of operator algebra adjustments when gravitational constraints manifest.

Implications and Future Directions

The implications of this paper expand both practically, in terms of calculational approaches to quantum gravity, and theoretically, by providing a refined conceptual toolset for entropy, observables, and horizon discussions. By leveraging the concepts of Type II1_1 and Type II_\infty algebras more extensively, new perspectives on information paradoxes and holographic principles might emerge.

Additionally, the paper suggests that the Type II1_1 algebra forms in de Sitter space can predict outcomes in cosmological horizons' entropic behavior when considering small GNG_N, the Newton's constant. Hence, as this framework is further tested and developed, deeper insights into the underlying quantum structure of space-time may become accessible.

In conclusion, this paper shapes a novel algebraic structure providing rigorous solutions to quantum gravity quandaries in de Sitter space, complementing and enriching established theoretical physics domains with robust mathematical models and potentially leading to breakthroughs in our understanding of cosmological and gravitational phenomena.

Youtube Logo Streamline Icon: https://streamlinehq.com