Generalized entropy for general subregions in quantum gravity (2306.01837v3)
Abstract: We consider quantum algebras of observables associated with subregions in theories of Einstein gravity coupled to matter in the $G_N\rightarrow 0$ limit. When the subregion is spatially compact or encompasses an asymptotic boundary, we argue that the algebra is a type II von Neumann factor. To do so in the former case we introduce a model of an observer living in the region; in the latter, the ADM Hamiltonian effectively serves as an observer. In both cases the entropy of states on which this algebra acts is UV finite, and we find that it agrees, up to a state-independent constant, with the generalized entropy. For spatially compact regions the algebra is type II$_1$, implying the existence of an entropy maximizing state, which realizes a version of Jacobson's entanglement equilibrium hypothesis. The construction relies on the existence of well-motivated but conjectural states whose modular flow is geometric at an instant in time. Our results generalize the recent work of Chandrasekaran, Longo, Penington, and Witten on an algebra of operators for the static patch of de Sitter space.
- Springer-Verlag, Berlin, 1992.
- M. Ohya and D. Petz, Quantum entropy and its use. Springer-Verlag Berlin, 1993.
- [arXiv:gr-qc/0311082].
- [arXiv:1209.3511].
- [arXiv:hep-th/9401070].
- [arXiv:hep-th/9506066].
- [arXiv:1104.3712].
- [arXiv:1302.1878].
- [arXiv:1506.02669].
- [arXiv:1010.5513].
- [arXiv:1510.02099].
- [arXiv:1509.02542].
- [arXiv:1706.09432].
- [arXiv:1812.04683].
- [arXiv:gr-qc/9908031].
- [arXiv:gr-qc/0302099].
- [arXiv:hep-th/0603001].
- [arXiv:0705.0016].
- [arXiv:1307.2892].
- [arXiv:1408.3203].
- [arXiv:1204.1330].
- [arXiv:1512.06431].
- [arXiv:1601.05416].
- [arXiv:1411.7041].
- [arXiv:1503.06237].
- [arXiv:1607.03901].
- [arXiv:1910.06328].
- [arXiv:1905.08762].
- [arXiv:1905.08255].
- [arXiv:1908.10996].
- [arXiv:1911.12333].
- [arXiv:1911.11977].
- [arXiv:2006.06872].
- [arXiv:1308.3716].
- [arXiv:1312.7856].
- [arXiv:1705.03026].
- [arXiv:1802.10103].
- [arXiv:1005.3035].
- [arXiv:gr-qc/9504004].
- [arXiv:1505.04753].
- [arXiv:gr-qc/9306030].
- [arXiv:1503.08207].
- [arXiv:1607.01025].
- [arXiv:1201.3666].
- [arXiv:1507.07921].
- [arXiv:gr-qc/9412019].
- [arXiv:1601.04744].
- [arXiv:1706.05061].
- [arXiv:2006.12527].
- [arXiv:2007.03563].
- [arXiv:2009.10739].
- [arXiv:2012.10367].
- [arXiv:2104.07643].
- [arXiv:2111.13181].
- [arXiv:2202.00133].
- [arXiv:1212.5183].
- [arXiv:1803.04993].
- [arXiv:1503.08825].
- [arXiv:1603.02812].
- [arXiv:1811.08900].
- [arXiv:2112.12828].
- [arXiv:2206.10780].
- [arXiv:1707.06622].
- [arXiv:1102.0440].
- [arXiv:1105.3445].
- [arXiv:1605.08072].
- [arXiv:1703.10656].
- M. Henneaux and C. Teitelboim, Quantization of gauge systems. Princeton University Press, 1992.
- [arXiv:gr-qc/9307038].
- [arXiv:gr-qc/9403028].
- [arXiv:1612.04374].
- [arXiv:1812.01596].
- [arXiv:2208.11706].
- [arXiv:0808.2842].
- [arXiv:1710.07379].
- [arXiv:hep-th/9403108].
- [arXiv:hep-th/0405152].
- [arXiv:1305.3291].
- Springer-Verlag, Berlin, 2003.
- G. Pedersen, C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras and Their Automorphism Groups. L.M.S. monographs. Academic Press, 1979.
- [arXiv:0804.2182].
- [arXiv:hep-th/0606141].
- [arXiv:1704.05839].
- [arXiv:1704.05464].
- [arXiv:1806.01281].
- [arXiv:1905.00577].
- [arXiv:1310.5713].
- [arXiv:1310.6659].
- [arXiv:1504.08040].
- [arXiv:1612.04024].
- [arXiv:2205.15341].
- [arXiv:1906.08616].
- [arXiv:2111.11974].
- H. Casini, D. A. Galante and R. C. Myers, Comments on Jacobson’s “Entanglement equilibrium and the Einstein equation”, J. High Energy Phys. 2016 (2016) 194. [arXiv:1601.00528].
- [arXiv:1602.01380].
- [arXiv:gr-qc/9307002].
- [arXiv:2210.09647].
- [arXiv:2009.04476].
- [arXiv:2010.02241].
- [arXiv:2108.04841].
- [arXiv:1406.7304].
- [arXiv:2305.10635].
- [arXiv:gr-qc/9406019].
- Cambridge University Press, 1987.
- [arXiv:gr-qc/0612121].
- [arXiv:1108.1496].
- [arXiv:0805.1902].
- Cambridge University Press, 1978.
- M. Takesaki, Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, 2001.
- Springer Science & Business Media, 2012.
- [arXiv:1911.11153].