Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Pull Request Title Generation (2206.10430v2)

Published 21 Jun 2022 in cs.SE

Abstract: Pull Requests (PRs) are a mechanism on modern collaborative coding platforms, such as GitHub. PRs allow developers to tell others that their code changes are available for merging into another branch in a repository. A PR needs to be reviewed and approved by the core team of the repository before the changes are merged into the branch. Usually, reviewers need to identify a PR that is in line with their interests before providing a review. By default, PRs are arranged in a list view that shows the titles of PRs. Therefore, it is desirable to have a precise and concise title, which is beneficial for both reviewers and other developers. However, it is often the case that developers do not provide good titles; we find that many existing PR titles are either inappropriate in length (i.e., too short or too long) or fail to convey useful information, which may result in PR being ignored or rejected. Therefore, there is a need for automatic techniques to help developers draft high-quality titles. In this paper, we introduce the task of automatic generation of PR titles. We formulate the task as a one-sentence summarization task. To facilitate the research on this task, we construct a dataset that consists of 43,816 PRs from 495 GitHub repositories. We evaluated the state-of-the-art summarization approaches for the automatic PR title generation task. We leverage ROUGE metrics to automatically evaluate the summarization approaches and conduct a manual evaluation. The experimental results indicate that BART is the best technique for generating satisfactory PR titles with ROUGE-1, ROUGE-2, and ROUGE-L F1-scores of 47.22, 25.27, and 43.12, respectively. The manual evaluation also shows that the titles generated by BART are preferred.

Citations (11)

Summary

We haven't generated a summary for this paper yet.