Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

MF-OMO: An Optimization Formulation of Mean-Field Games (2206.09608v3)

Published 20 Jun 2022 in math.OC, cs.MA, and math.PR

Abstract: This paper proposes a new mathematical paradigm to analyze discrete-time mean-field games. It is shown that finding Nash equilibrium solutions for a general class of discrete-time mean-field games is equivalent to solving an optimization problem with bounded variables and simple convex constraints, called MF-OMO. This equivalence framework enables finding multiple (and possibly all) Nash equilibrium solutions of mean-field games by standard algorithms. For instance, projected gradient descent is shown to be capable of retrieving all possible Nash equilibrium solutions when there are finitely many of them, with proper initializations. Moreover, analyzing mean-field games with linear rewards and mean-field independent dynamics is reduced to solving a finite number of linear programs, hence solvable in finite time. This framework does not rely on the contractive and the monotone assumptions and the uniqueness of the Nash equilibrium.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.