Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Explainable Global Error Weighted on Feature Importance: The xGEWFI metric to evaluate the error of data imputation and data augmentation (2206.08980v1)

Published 17 Jun 2022 in cs.LG

Abstract: Evaluating the performance of an algorithm is crucial. Evaluating the performance of data imputation and data augmentation can be similar since both generated data can be compared with an original distribution. Although, the typical evaluation metrics have the same flaw: They calculate the feature's error and the global error on the generated data without weighting the error with the feature importance. The result can be good if all of the feature's importance is similar. However, in most cases, the importance of the features is imbalanced, and it can induce an important bias on the features and global errors. This paper proposes a novel metric named "Explainable Global Error Weighted on Feature Importance"(xGEWFI). This new metric is tested in a whole preprocessing method that 1. detects the outliers and replaces them with a null value. 2. imputes the data missing, and 3. augments the data. At the end of the process, the xGEWFI error is calculated. The distribution error between the original and generated data is calculated using a Kolmogorov-Smirnov test (KS test) for each feature. Those results are multiplied by the importance of the respective features, calculated using a Random Forest (RF) algorithm. The metric result is expressed in an explainable format, aiming for an ethical AI.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.