Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Enriched physics-informed neural networks for in-plane crack problems: Theory and MATLAB codes (2206.08750v1)

Published 12 Jun 2022 in cs.CE, cs.NA, and math.NA

Abstract: In this paper, a method based on the physics-informed neural networks (PINNs) is presented to model in-plane crack problems in the linear elastic fracture mechanics. Instead of forming a mesh, the PINNs is meshless and can be trained on batches of randomly sampled collocation points. In order to capture the theoretical singular behavior of the near-tip stress and strain fields, the standard PINNs formulation is enriched here by including the crack-tip asymptotic functions such that the singular solutions at the crack-tip region can be modeled accurately without a high degree of nodal refinement. The learnable parameters of the enriched PINNs are trained to satisfy the governing equations of the cracked body and the corresponding boundary conditions. It was found that the incorporation of the crack-tip enrichment functions in PINNs is substantially simpler and more trouble-free than in the finite element (FEM) or boundary element (BEM) methods. The present algorithm is tested on a class of representative benchmarks with different modes of loading types. Results show that the present method allows the calculation of accurate stress intensity factors (SIFs) with far fewer degrees of freedom. A self-contained MATLAB code and data-sets accompanying this manuscript are also provided.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.