Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

JU_NLP at HinglishEval: Quality Evaluation of the Low-Resource Code-Mixed Hinglish Text (2206.08053v1)

Published 16 Jun 2022 in cs.CL and cs.SI

Abstract: In this paper we describe a system submitted to the INLG 2022 Generation Challenge (GenChal) on Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text. We implement a Bi-LSTM-based neural network model to predict the Average rating score and Disagreement score of the synthetic Hinglish dataset. In our models, we used word embeddings for English and Hindi data, and one hot encodings for Hinglish data. We achieved a F1 score of 0.11, and mean squared error of 6.0 in the average rating score prediction task. In the task of Disagreement score prediction, we achieve a F1 score of 0.18, and mean squared error of 5.0.

Citations (2)

Summary

We haven't generated a summary for this paper yet.