Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Learnable Frequency Filters for Speech Feature Extraction in Speaker Verification (2206.07563v1)

Published 15 Jun 2022 in eess.AS

Abstract: Mel-scale spectrum features are used in various recognition and classification tasks on speech signals. There is no reason to expect that these features are optimal for all different tasks, including speaker verification (SV). This paper describes a learnable front-end feature extraction model. The model comprises a group of filters to transform the Fourier spectrum. Model parameters that define these filters are trained end-to-end and optimized specifically for the task of speaker verification. Compared to the standard Mel-scale filter-bank, the filters' bandwidths and center frequencies are adjustable. Experimental results show that applying the learnable acoustic front-end improves speaker verification performance over conventional Mel-scale spectrum features. Analysis on the learned filter parameters suggests that narrow-band information benefits the SV system performance. The proposed model achieves a good balance between performance and computation cost. In resource-constrained computation settings, the model significantly outperforms CNN-based learnable front-ends. The generalization ability of the proposed model is also demonstrated on different embedding extraction models and datasets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.