Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

High-Dimensional Bayesian Optimization with Constraints: Application to Powder Weighing (2206.05988v1)

Published 13 Jun 2022 in cs.LG

Abstract: Bayesian optimization works effectively optimizing parameters in black-box problems. However, this method did not work for high-dimensional parameters in limited trials. Parameters can be efficiently explored by nonlinearly embedding them into a low-dimensional space; however, the constraints cannot be considered. We proposed combining parameter decomposition by introducing disentangled representation learning into nonlinear embedding to consider both known equality and unknown inequality constraints in high-dimensional Bayesian optimization. We applied the proposed method to a powder weighing task as a usage scenario. Based on the experimental results, the proposed method considers the constraints and contributes to reducing the number of trials by approximately 66% compared to manual parameter tuning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube