Anisotropic flow and flow fluctuations of identified hadrons in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV (2206.04587v2)
Abstract: The first measurements of elliptic flow of $\pi\pm$, ${\rm K}\pm$, p+$\overline{\rm p}$, ${\rm K_{S}0}$, $\Lambda$+$\overline{\Lambda}$, $\phi$, $\Xi-$+$\Xi+$, and $\Omega-$+$\Omega+$ using multiparticle cumulants in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented. Results obtained with two- ($v_2{2}$) and four-particle cumulants ($v_2{4}$) are shown as a function of transverse momentum, $p_{\rm T}$, for various collision centrality intervals. Combining the data for both $v_2{2}$ and $v_2{4}$ also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark-gluon plasma. The characteristic features observed in previous $p_{\rm T}$-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low $p_{\rm T}$ and the approximate scaling with the number of constituent quarks at intermediate $p_{\rm T}$, are similarly present in the four-particle correlations and the combinations of $v_2{2}$ and $v_2{4}$. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide $p_{\rm T}$ range.
- E. V. Shuryak, “Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Pions”, Phys. Lett. B78 (1978) 150. [Yad. Fiz.28,796(1978)].
- E. V. Shuryak, “Quantum Chromodynamics and the Theory of Superdense Matter”, Phys. Rept. 61 (1980) 71–158.
- J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D46 (1992) 229–245.
- S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective phenomena in non-central nuclear collisions”, Landolt-Bornstein 23 (2010) 293–333, arXiv:0809.2949 [nucl-ex].
- E. V. Shuryak, “Theory and phenomenology of the QCD vacuum”, Phys. Rept. 115 (1984) 151.
- J. Cleymans, R. V. Gavai, and E. Suhonen, “Quarks and Gluons at High Temperatures and Densities”, Phys. Rept. 130 (1986) 217.
- S. A. Bass, M. Gyulassy, H. Stoecker, and W. Greiner, “Signatures of quark gluon plasma formation in high-energy heavy ion collisions: A Critical review”, J. Phys. G25 (1999) R1–R57, arXiv:hep-ph/9810281 [hep-ph].
- S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions”, Z. Phys. C70 (1996) 665–672, arXiv:hep-ph/9407282 [hep-ph].
- A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions”, Phys. Rev. C58 (1998) 1671–1678, arXiv:nucl-ex/9805001 [nucl-ex].
- B. Alver and G. Roland, “Collision geometry fluctuations and triangular flow in heavy-ion collisions”, Phys. Rev. C81 (2010) 054905, arXiv:1003.0194 [nucl-th]. [Erratum: Phys. Rev.C82,039903(2010)].
- B. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, “Triangular flow in hydrodynamics and transport theory”, Phys. Rev. C82 (2010) 034913, arXiv:1007.5469 [nucl-th].
- BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1–27, arXiv:nucl-ex/0410020.
- PHENIX Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl-ex/0410003.
- PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl-ex/0410022.
- STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl-ex/0501009.
- ALICE Collaboration, K. Aamodt et al., “Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 107 (2011) 032301, arXiv:1105.3865 [nucl-ex].
- ATLAS Collaboration, G. Aad et al., “Measurement of the azimuthal anisotropy for charged particle production in sNN=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV lead-lead collisions with the ATLAS detector”, Phys. Rev. C86 (2012) 014907, arXiv:1203.3087 [hep-ex].
- CMS Collaboration, S. Chatrchyan et al., “Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C89 (2014) 044906, arXiv:1310.8651 [nucl-ex].
- F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions”, Phys. Rev. C 85 (2012) 024908, arXiv:1111.6538 [nucl-th].
- CMS Collaboration, V. Khachatryan et al., “Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions”, Phys. Rev. C 92 (2015) 034911, arXiv:1503.01692 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC”, JHEP 09 (2017) 032, arXiv:1707.05690 [nucl-ex].
- ATLAS Collaboration, M. Aaboud et al., “Measurement of longitudinal flow decorrelations in Pb+Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\text{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 2.76 and 5.02 TeV with the ATLAS detector”, Eur. Phys. J. C 78 (2018) 142, arXiv:1709.02301 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 and 2.76 TeV”, JHEP 07 (2018) 103, arXiv:1804.02944 [nucl-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Non-Gaussian elliptic-flow fluctuations in PbPb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{\smash[b]{s_{{}_{\text{NN}}}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 789 (2019) 643–665, arXiv:1711.05594 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=2.76 TeV”, Phys. Lett. B 719 (2013) 18–28, arXiv:1205.5761 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “Elliptic flow of identified hadrons in Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 06 (2015) 190, arXiv:1405.4632 [nucl-ex].
- ALICE Collaboration, J. Adam et al., “Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 09 (2016) 164, arXiv:1606.06057 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Anisotropic flow of identified particles in Pb-Pb collisions at sNNsubscript𝑠NN{\sqrt{s}}_{\mathrm{NN}}square-root start_ARG italic_s end_ARG start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT = 5.02 TeV”, JHEP 09 (2018) 006, arXiv:1805.04390 [nucl-ex].
- P. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics”, Phys. Rev. Lett. 94 (2005) 111601, arXiv:hep-th/0405231 [hep-th].
- P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen, and S. A. Voloshin, “Radial and elliptic flow at RHIC: Further predictions”, Phys. Lett. B 503 (2001) 58–64, arXiv:hep-ph/0101136.
- S. A. Voloshin, “Anisotropic flow”, Nucl. Phys. A715 (2003) 379–388, arXiv:nucl-ex/0210014 [nucl-ex].
- D. Molnar and S. A. Voloshin, “Elliptic flow at large transverse momenta from quark coalescence”, Phys. Rev. Lett. 91 (2003) 092301, arXiv:nucl-th/0302014 [nucl-th].
- ALICE Collaboration, S. Acharya et al., “Non-linear flow modes of identified particles in Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 06 (2020) 147, arXiv:1912.00740 [nucl-ex].
- R. S. Bhalerao, J.-Y. Ollitrault, and S. Pal, “Characterizing flow fluctuations with moments”, Phys. Lett. B 742 (2015) 94–98, arXiv:1411.5160 [nucl-th].
- L. Yan and J.-Y. Ollitrault, “ν4,ν5,ν6,ν7subscript𝜈4subscript𝜈5subscript𝜈6subscript𝜈7\nu_{4},\nu_{5},\nu_{6},\nu_{7}italic_ν start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , italic_ν start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_ν start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT , italic_ν start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT: nonlinear hydrodynamic response versus LHC data”, Phys. Lett. B 744 (2015) 82–87, arXiv:1502.02502 [nucl-th].
- ALICE Collaboration, S. Acharya et al., “Linear and non-linear flow modes in Pb-Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B 773 (2017) 68–80, arXiv:1705.04377 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 05 (2020) 085, arXiv:2002.00633 [nucl-ex].
- A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations”, Phys. Rev. C 89 (2014) 064904, arXiv:1312.3572 [nucl-ex].
- P. Huo, K. Gajdošová, J. Jia, and Y. Zhou, “Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems”, Phys. Lett. B 777 (2018) 201–206, arXiv:1710.07567 [nucl-ex].
- Z. Moravcova, K. Gulbrandsen, and Y. Zhou, “Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions”, Phys. Rev. C 103 (2021) 024913, arXiv:2005.07974 [nucl-th].
- ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
- ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
- A. Akindinov et al., “Performance of the ALICE Time-Of-Flight detector at the LHC”, Eur. Phys. J. Plus 128 (2013) 44.
- M. Bondila et al., “ALICE T0 detector”, IEEE Trans. Nucl. Sci. 52 (2005) 1705–1711.
- ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
- ALICE Collaboration, B. Abelev et al., “Centrality determination of Pb-Pb collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV with ALICE”, Phys. Rev. C 88 (2013) 044909, arXiv:1301.4361 [nucl-ex].
- ALICE Collaboration, J. Adam and others., “Particle identification in ALICE: a Bayesian approach”, Eur. Phys. J. Plus 131 (2016) , arXiv:1602.01392.
- Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics”, PTEP 2020 (2020) 083C01.
- J. Podolanski and R. Armenteros, “Iii. analysis of v-events”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 13–30.
- N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “A New method for measuring azimuthal distributions in nucleus-nucleus collisions”, Phys. Rev. C 63 (2001) 054906, arXiv:nucl-th/0007063.
- N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “Flow analysis from multiparticle azimuthal correlations”, Phys. Rev. C 64 (2001) 054901, arXiv:nucl-th/0105040.
- ATLAS Collaboration, G. Aad et al., “Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at = 2.76 TeV with the ATLAS detector at the LHC”, JHEP 11 (2013) 183, arXiv:1305.2942 [hep-ex].
- S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, “Elliptic flow in the Gaussian model of eccentricity fluctuations”, Phys. Lett. B 659 (2008) 537–541, arXiv:0708.0800 [nucl-th].
- N. Borghini and J. Y. Ollitrault, “Azimuthally sensitive correlations in nucleus-nucleus collisions”, Phys. Rev. C 70 (2004) 064905, arXiv:nucl-th/0407041.
- R. Barlow, “Systematic errors: Facts and fictions”, in Conference on Advanced Statistical Techniques in Particle Physics, pp. 134–144. 7, 2002. arXiv:hep-ex/0207026.
- W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang, “Medium modification of γ𝛾\gammaitalic_γ-jet fragmentation functions in Pb+Pb collisions at LHC”, Phys. Lett. B 810 (2020) 135783, arXiv:2005.09678 [hep-ph].
- W. Zhao, W. Ke, W. Chen, T. Luo, and X.-N. Wang, “From hydro to jet quenching, coalescence and hadron cascade: a coupled approach to solving the RAA⊗v2tensor-productsubscript𝑅𝐴𝐴subscript𝑣2R_{AA}\otimes v_{2}italic_R start_POSTSUBSCRIPT italic_A italic_A end_POSTSUBSCRIPT ⊗ italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT puzzle”, Phys. Rev. Lett. 128 (2022) 022302, arXiv:2103.14657 [hep-ph].
- ALICE Collaboration, B. Abelev et al., “Long-range angular correlations of π𝜋\rm\piitalic_π, K and p in p-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 726 (2013) 164–177, arXiv:1307.3237 [nucl-ex].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.