Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN Large Hadron Collider (2206.04574v2)

Published 9 Jun 2022 in nucl-ex and hep-ex

Abstract: This Letter reports on the first measurements of transverse momentum dependent flow angle $\Psi_n$ and flow magnitude $v_n$ fluctuations, determined using new four-particle correlators. The measurements are performed for various centralities in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV with ALICE at the CERN Large Hadron Collider. Both flow angle and flow magnitude fluctuations are observed in the presented centrality ranges and are strongest in the most central collisions and for a transverse momentum $p_{\rm T}>2$ GeV/$c$. Comparison with theoretical models, including iEBE-VISHNU, MUSIC, and AMPT, show that the measurements exhibit unique sensitivities to the initial state of heavy-ion collisions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. E. V. Shuryak, “Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions”, Phys. Lett. B78 (1978) 150. [Yad. Fiz.28,796(1978)].
  2. E. V. Shuryak, “Quantum Chromodynamics and the Theory of Superdense Matter”, Phys. Rept. 61 (1980) 71–158.
  3. BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1–27, arXiv:nucl-ex/0410020.
  4. STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl-ex/0501009.
  5. PHENIX Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl-ex/0410003.
  6. PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl-ex/0410022.
  7. B. Muller, J. Schukraft, and B. Wyslouch, “First Results from Pb+Pb collisions at the LHC”, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361–386, arXiv:1202.3233 [hep-ex].
  8. J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D46 (1992) 229–245.
  9. S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective phenomena in non-central nuclear collisions”, Landolt-Bornstein 23 (2010) 293–333, arXiv:0809.2949 [nucl-ex].
  10. U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826 [nucl-th].
  11. S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions”, Z. Phys. C70 (1996) 665–672, arXiv:hep-ph/9407282 [hep-ph].
  12. B. Alver and G. Roland, “Collision geometry fluctuations and triangular flow in heavy-ion collisions”, Phys. Rev. C81 (2010) 054905, arXiv:1003.0194 [nucl-th]. [Erratum: Phys. Rev.C82,039903(2010)].
  13. B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, “Triangular flow in hydrodynamics and transport theory”, Phys. Rev. C82 (2010) 034913, arXiv:1007.5469 [nucl-th].
  14. D. Teaney and L. Yan, “Triangularity and Dipole Asymmetry in Heavy Ion Collisions”, Phys. Rev. C83 (2011) 064904, arXiv:1010.1876 [nucl-th].
  15. M. Luzum, “Collective flow and long-range correlations in relativistic heavy ion collisions”, Phys. Lett. B696 (2011) 499–504, arXiv:1011.5773 [nucl-th].
  16. STAR Collaboration, K. H. Ackermann et al., “Elliptic flow in Au + Au collisions at (S(NN))**(1/2) = 130 GeV”, Phys. Rev. Lett. 86 (2001) 402–407, arXiv:nucl-ex/0009011.
  17. PHENIX Collaboration, S. S. Adler et al., “Elliptic flow of identified hadrons in Au+Au collisions at s(NN)**(1/2) = 200-GeV”, Phys. Rev. Lett. 91 (2003) 182301, arXiv:nucl-ex/0305013.
  18. STAR Collaboration, L. Adamczyk et al., “Third Harmonic Flow of Charged Particles in Au+Au Collisions at sqrtsNN = 200 GeV”, Phys. Rev. C 88 (2013) 014904, arXiv:1301.2187 [nucl-ex].
  19. PHENIX Collaboration, A. Adare et al., “Measurements of elliptic and triangular flow in high-multiplicity 33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe+++Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{{}_{NN}}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 115 (2015) 142301, arXiv:1507.06273 [nucl-ex].
  20. ALICE Collaboration, K. Aamodt et al., “Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV”, Phys. Rev. Lett. 105 (2010) 252302, arXiv:1011.3914 [nucl-ex].
  21. ALICE Collaboration, K. Aamodt et al., “Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=2.76 TeV”, Phys. Rev. Lett. 107 (2011) 032301, arXiv:1105.3865 [nucl-ex].
  22. ALICE Collaboration, B. Abelev et al., “Elliptic flow of identified hadrons in Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 06 (2015) 190, arXiv:1405.4632 [nucl-ex].
  23. ALICE Collaboration, J. Adam et al., “Anisotropic flow of charged particles in Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 116 (2016) 132302, arXiv:1602.01119 [nucl-ex].
  24. ALICE Collaboration, S. Acharya et al., “Linear and non-linear flow modes in Pb-Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B773 (2017) 68–80, arXiv:1705.04377 [nucl-ex].
  25. ATLAS Collaboration, G. Aad et al., “Measurement of the azimuthal anisotropy for charged particle production in sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV lead-lead collisions with the ATLAS detector”, Phys. Rev. C86 (2012) 014907, arXiv:1203.3087 [hep-ex].
  26. ATLAS Collaboration, G. Aad et al., “Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS detector”, Phys. Lett. B707 (2012) 330–348, arXiv:1108.6018 [hep-ex].
  27. ATLAS Collaboration, G. Aad et al., “Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV with the ATLAS detector at the LHC”, JHEP 11 (2013) 183, arXiv:1305.2942 [hep-ex].
  28. CMS Collaboration, S. Chatrchyan et al., “Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Eur. Phys. J. C72 (2012) 2012, arXiv:1201.3158 [nucl-ex].
  29. CMS Collaboration, S. Chatrchyan et al., “Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s}_{NN}square-root start_ARG italic_s end_ARG start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT=2.76 TeV”, Phys. Rev. C87 (2013) 014902, arXiv:1204.1409 [nucl-ex].
  30. CMS Collaboration, S. Chatrchyan et al., “Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 109 (2012) 022301, arXiv:1204.1850 [nucl-ex].
  31. ALICE Collaboration, S. Acharya et al., “Anisotropic flow in Xe-Xe collisions at 𝐬NN=5.44subscript𝐬NN5.44\mathbf{\sqrt{s_{\rm{NN}}}=5.44}square-root start_ARG bold_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = bold_5.44 TeV”, Phys. Lett. B 784 (2018) 82–95, arXiv:1805.01832 [nucl-ex].
  32. M. Luzum and H. Petersen, “Initial State Fluctuations and Final State Correlations in Relativistic Heavy-Ion Collisions”, J. Phys. G41 (2014) 063102, arXiv:1312.5503 [nucl-th].
  33. E. Shuryak, “Strongly coupled quark-gluon plasma in heavy ion collisions”, Rev. Mod. Phys. 89 (2017) 035001, arXiv:1412.8393 [hep-ph].
  34. H. Song, Y. Zhou, and K. Gajdosova, “Collective flow and hydrodynamics in large and small systems at the LHC”, Nucl. Sci. Tech. 28 (2017) 99, arXiv:1703.00670 [nucl-th].
  35. ALICE Collaboration, “The ALICE experiment – A journey through QCD”, arXiv:2211.04384 [nucl-ex].
  36. U. Heinz, Z. Qiu, and C. Shen, “Fluctuating flow angles and anisotropic flow measurements”, Phys. Rev. C87 (2013) 034913, arXiv:1302.3535 [nucl-th].
  37. F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Breaking of factorization of two-particle correlations in hydrodynamics”, Phys. Rev. C87 (2013) 031901, arXiv:1211.0989 [nucl-th].
  38. A. Sakai, K. Murase, and T. Hirano, “Rapidity decorrelation of anisotropic flow caused by hydrodynamic fluctuations”, Phys. Rev. C 102 (2020) 064903, arXiv:2003.13496 [nucl-th].
  39. ALICE Collaboration, S. Acharya et al., “Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC”, JHEP 09 (2017) 032, arXiv:1707.05690 [nucl-ex].
  40. CMS Collaboration, S. Chatrchyan et al., “Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at sN⁢N=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 02 (2014) 088, arXiv:1312.1845 [nucl-ex].
  41. CMS Collaboration, V. Khachatryan et al., “Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions”, Phys. Rev. C92 (2015) 034911, arXiv:1503.01692 [nucl-ex].
  42. ALICE Collaboration, K. Aamodt et al., “Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B708 (2012) 249–264, arXiv:1109.2501 [nucl-ex].
  43. P. Bozek and W. Broniowski, “Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions”, Phys. Rev. C 97 (2018) 034913, arXiv:1711.03325 [nucl-th].
  44. P. Bożek and R. Samanta, “Higher order cumulants of transverse momentum and harmonic flow in relativistic heavy ion collisions”, Phys. Rev. C 104 (2021) 014905, arXiv:2103.15338 [nucl-th].
  45. A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations”, Phys. Rev. C89 (2014) 064904, arXiv:1312.3572 [nucl-ex].
  46. Z. Moravcova, K. Gulbrandsen, and Y. Zhou, “Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions”, Phys. Rev. C103 (2021) 024913, arXiv:2005.07974 [nucl-th].
  47. ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
  48. ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
  49. ALICE Collaboration, B. Abelev et al., “Centrality determination of Pb-Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV with ALICE”, Phys. Rev. C88 (2013) 044909, arXiv:1301.4361 [nucl-ex].
  50. ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
  51. J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
  52. ALICE Collaboration, “The ALICE definition of primary particles”, ALICE-PUBLIC-2017-005 (Jun, 2017) . https://cds.cern.ch/record/2270008.
  53. X.-N. Wang and M. Gyulassy, “hijing: A monte carlo model for multiple jet production in pppp\mathrm{pp}roman_pp, pApA\mathrm{pA}roman_pA, and AAAA\mathrm{AA}roman_AA collisions”, Phys. Rev. D44 (Dec, 1991) 3501–3516.
  54. R. Barlow, “Systematic errors: Facts and fictions”, in Conference on Advanced Statistical Techniques in Particle Physics, pp. 134–144. 7, 2002. arXiv:hep-ex/0207026.
  55. W. Zhao, H.-j. Xu, and H. Song, “Collective flow in 2.76 A TeV and 5.02 A TeV Pb+Pb collisions”, Eur. Phys. J. C77 (2017) 645, arXiv:1703.10792 [nucl-th].
  56. P. Bozek and R. Samanta, “Factorization breaking for higher moments of harmonic flow”, Phys. Rev. C 105 (2022) 034904, arXiv:2109.07781 [nucl-th].
  57. G.-L. Ma and Z.-W. Lin, “Predictions for sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV Pb+Pb Collisions from a Multi-Phase Transport Model”, Phys. Rev. C93 (2016) 054911, arXiv:1601.08160 [nucl-th].
  58. Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, “A Multi-phase transport model for relativistic heavy ion collisions”, Phys. Rev. C72 (2005) 064901, arXiv:nucl-th/0411110 [nucl-th].
  59. B. Schenke, S. Jeon, and C. Gale, “Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics”, Phys. Rev. Lett. 106 (2011) 042301, arXiv:1009.3244 [hep-ph].
  60. B. Schenke, S. Jeon, and C. Gale, “(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions”, Phys. Rev. C82 (2010) 014903, arXiv:1004.1408 [hep-ph].
  61. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, “The iEBE-VISHNU code package for relativistic heavy-ion collisions”, Comput. Phys. Commun. 199 (2016) 61–85, arXiv:1409.8164 [nucl-th].
  62. B.-A. Li and C. M. Ko, “Formation of superdense hadronic matter in high-energy heavy ion collisions”, Phys. Rev. C52 (1995) 2037–2063, arXiv:nucl-th/9505016 [nucl-th].
  63. J. Xu and C. M. Ko, “Pb-Pb collisions at sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV in a multiphase transport model”, Phys. Rev. C 83 (2011) 034904, arXiv:1101.2231 [nucl-th].
  64. P. Bożek, W. Broniowski, M. Rybczynski, and G. Stefanek, “GLISSANDO 3: GLauber Initial-State Simulation AND mOre…, ver. 3”, Comput. Phys. Commun. 245 (2019) 106850, arXiv:1901.04484 [nucl-th].
  65. J. S. Moreland, J. E. Bernhard, and S. A. Bass, “Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions”, Phys. Rev. C92 (2015) 011901, arXiv:1412.4708 [nucl-th].
  66. S. A. Bass et al., “Microscopic models for ultrarelativistic heavy ion collisions”, Prog. Part. Nucl. Phys. 41 (1998) 255–369, arXiv:nucl-th/9803035 [nucl-th].
  67. M. Li, Y. Zhou, W. Zhao, B. Fu, Y. Mou, and H. Song, “Investigations on mixed harmonic cumulants in heavy-ion collisions at energies available at the CERN Large Hadron Collider”, Phys. Rev. C104 (2021) 024903, arXiv:2104.10422 [nucl-th].
  68. J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, “Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium”, Phys. Rev. C94 (2016) 024907, arXiv:1605.03954 [nucl-th].
  69. E. G. Nielsen and Y. Zhou, “Transverse momentum decorrelation of the flow vector in Pb-Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2211.13651 [nucl-ex].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)