Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Convergence rate of general entropic optimal transport costs (2206.03347v1)

Published 7 Jun 2022 in math.OC, math.AP, and math.FA

Abstract: We investigate the convergence rate of the optimal entropic cost $v_\varepsilon$ to the optimal transport cost as the noise parameter $\varepsilon \downarrow 0$. We show that for a large class of cost functions $c$ on $\mathbb{R}d\times \mathbb{R}d$ (for which optimal plans are not necessarily unique or induced by a transport map) and compactly supported and $L{\infty}$ marginals, one has $v_\varepsilon-v_0= \frac{d}{2} \varepsilon \log(1/\varepsilon)+ O(\varepsilon)$. Upper bounds are obtained by a block approximation strategy and an integral variant of Alexandrov's theorem. Under an infinitesimal twist condition on $c$, i.e. invertibility of $\nabla_{xy}2 c(x,y)$, we get the lower bound by establishing a quadratic detachment of the duality gap in $d$ dimensions thanks to Minty's trick.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.