Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

New lower bounds on crossing numbers of $K_{m,n}$ from semidefinite programming (2206.02755v2)

Published 6 Jun 2022 in math.CO, cs.DM, math.OC, and math.RT

Abstract: In this paper, we use semidefinite programming and representation theory to compute new lower bounds on the crossing number of the complete bipartite graph $K_{m,n}$, extending a method from de Klerk et al. [SIAM J. Discrete Math. 20 (2006), 189--202] and the subsequent reduction by De Klerk, Pasechnik and Schrijver [Math. Prog. Ser. A and B, 109 (2007) 613--624]. We exploit the full symmetry of the problem using a novel decomposition technique. This results in a full block-diagonalization of the underlying matrix algebra, which we use to improve bounds on several concrete instances. Our results imply that $\text{cr}(K_{10,n}) \geq 4.87057 n2 - 10n$, $\text{cr}(K_{11,n}) \geq 5.99939 n2-12.5n$, $\text{cr}(K_{12,n}) \geq 7.25579 n2 - 15n$, $\text{cr}(K_{13,n}) \geq 8.65675 n2-18n$ for all $n$. The latter three bounds are computed using a new and well-performing relaxation of the original semidefinite programming bound. This new relaxation is obtained by only requiring one small matrix block to be positive semidefinite.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.