Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Fair Classification via Transformer Neural Networks: Case Study of an Educational Domain (2206.01410v2)

Published 3 Jun 2022 in cs.LG and cs.AI

Abstract: Educational technologies nowadays increasingly use data and Machine Learning (ML) models. This gives the students, instructors, and administrators support and insights for the optimum policy. However, it is well acknowledged that ML models are subject to bias, which raises concerns about the fairness, bias, and discrimination of using these automated ML algorithms in education and its unintended and unforeseen negative consequences. The contribution of bias during the decision-making comes from datasets used for training ML models and the model architecture. This paper presents a preliminary investigation of the fairness of transformer neural networks on the two tabular datasets: Law School and Student-Mathematics. In contrast to classical ML models, the transformer-based models transform these tabular datasets into a richer representation while solving the classification task. We use different fairness metrics for evaluation and check the trade-off between fairness and accuracy of the transformer-based models over the tabular datasets. Empirically, our approach shows impressive results regarding the trade-off between fairness and performance on the Law School dataset.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube