Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Retrieval-enhanced Graph Neural Networks (2206.00362v4)

Published 1 Jun 2022 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) are effective tools for graph representation learning. Most GNNs rely on a recursive neighborhood aggregation scheme, named message passing, thereby their theoretical expressive power is limited to the first-order Weisfeiler-Lehman test (1-WL). An effective approach to this challenge is to explicitly retrieve some annotated examples used to enhance GNN models. While retrieval-enhanced models have been proved to be effective in many language and vision domains, it remains an open question how effective retrieval-enhanced GNNs are when applied to graph datasets. Motivated by this, we want to explore how the retrieval idea can help augment the useful information learned in the graph neural networks, and we design a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models. In GRAPHRETRIEVAL, for each input graph, similar graphs together with their ground-true labels are retrieved from an existing database. Thus they can act as a potential enhancement to complete various graph property predictive tasks. We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs. Moreover, our empirical study also illustrates that retrieval enhancement is a promising remedy for alleviating the long-tailed label distribution problem.

Summary

We haven't generated a summary for this paper yet.