Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Can Graph Neural Networks Help Document Retrieval: A Case Study on CORD19 with Concept Map Generation (2201.04672v1)

Published 12 Jan 2022 in cs.IR, cs.CL, and cs.LG

Abstract: Graph neural networks (GNNs), as a group of powerful tools for representation learning on irregular data, have manifested superiority in various downstream tasks. With unstructured texts represented as concept maps, GNNs can be exploited for tasks like document retrieval. Intrigued by how can GNNs help document retrieval, we conduct an empirical study on a large-scale multi-discipline dataset CORD-19. Results show that instead of the complex structure-oriented GNNs such as GINs and GATs, our proposed semantics-oriented graph functions achieve better and more stable performance based on the BM25 retrieved candidates. Our insights in this case study can serve as a guideline for future work to develop effective GNNs with appropriate semantics-oriented inductive biases for textual reasoning tasks like document retrieval and classification. All code for this case study is available at https://github.com/HennyJie/GNN-DocRetrieval.

Citations (19)

Summary

We haven't generated a summary for this paper yet.