Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Approach to Ordering Objectives and Pareto Efficient Solutions (2205.15291v1)

Published 30 May 2022 in math.OC and stat.ML

Abstract: Solutions to multi-objective optimization problems can generally not be compared or ordered, due to the lack of orderability of the single objectives. Furthermore, decision-makers are often made to believe that scaled objectives can be compared. This is a fallacy, as the space of solutions is in practice inhomogeneous without linear trade-offs. We present a method that uses the probability integral transform in order to map the objectives of a problem into scores that all share the same range. In the score space, we can learn which trade-offs are actually possible and develop methods for mapping the desired trade-off back into the preference space. Our results demonstrate that Pareto efficient solutions can be ordered using a low- or no-preference aggregation of the single objectives. When using scores instead of raw objectives during optimization, the process allows for obtaining trade-offs significantly closer to the expressed preference. Using a non-linear mapping for transforming a desired solution in the score space to the required preference for optimization improves this even more drastically.

Summary

We haven't generated a summary for this paper yet.