Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integration of Preferences in Decomposition Multi-Objective Optimization (1701.05935v1)

Published 20 Jan 2017 in cs.NE

Abstract: Most existing studies on evolutionary multi-objective optimization focus on approximating the whole Pareto-optimal front. Nevertheless, rather than the whole front, which demands for too many points (especially in a high-dimensional space), the decision maker might only interest in a partial region, called the region of interest. In this case, solutions outside this region can be noisy to the decision making procedure. Even worse, there is no guarantee that we can find the preferred solutions when tackling problems with complicated properties or a large number of objectives. In this paper, we develop a systematic way to incorporate the decision maker's preference information into the decomposition-based evolutionary multi-objective optimization methods. Generally speaking, our basic idea is a non-uniform mapping scheme by which the originally uniformly distributed reference points on a canonical simplex can be mapped to the new positions close to the aspiration level vector specified by the decision maker. By these means, we are able to steer the search process towards the region of interest either directly or in an interactive manner and also handle a large number of objectives. In the meanwhile, the boundary solutions can be approximated given the decision maker's requirements. Furthermore, the extent of the region of the interest is intuitively understandable and controllable in a closed form. Extensive experiments, both proof-of-principle and on a variety of problems with 3 to 10 objectives, fully demonstrate the effectiveness of our proposed method for approximating the preferred solutions in the region of interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ke Li (723 papers)
  2. Kalyanmoy Deb (42 papers)
  3. Xin Yao (139 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.