Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep-XFCT: Deep learning 3D-mineral liberation analysis with micro X-ray fluorescence and computed tomography (2205.13102v1)

Published 26 May 2022 in cs.LG and physics.data-an

Abstract: The rapid development of X-ray micro-computed tomography (micro-CT) opens new opportunities for 3D analysis of particle and grain-size characterisation, determination of particle densities and shape factors, estimation of mineral associations and liberation and locking. Current practices in mineral liberation analysis are based on 2D representations leading to systematic errors in the extrapolation to volumetric properties. New quantitative methods based on tomographic data are therefore urgently required for characterisation of mineral deposits, mineral processing, characterisation of tailings, rock typing, stratigraphic refinement, reservoir characterisation for applications in the resource industry, environmental and material sciences. To date, no simple non-destructive method exists for 3D mineral liberation analysis. We present a new development based on combining micro-CT with micro-X-ray fluorescence (micro-XRF) using deep learning. We demonstrate successful semi-automated multi-modal analysis of a crystalline magmatic rock where the new technique overcomes the difficult task of differentiating feldspar from quartz in micro-CT data set. The approach is universal and can be extended to any multi-modal and multi-instrument analysis for further refinement. We conclude that the combination of micro-CT and micro-XRF already provides a new opportunity for robust 3D mineral liberation analysis in both field and laboratory applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.