Papers
Topics
Authors
Recent
Search
2000 character limit reached

PIXLISE-C: Exploring The Data Analysis Needs of NASA Scientists for Mineral Identification

Published 30 Mar 2021 in cs.HC, cs.GR, physics.comp-ph, and physics.ins-det | (2103.16060v1)

Abstract: NASA JPL scientists working on the micro x-ray fluorescence (microXRF) spectroscopy data collected from Mars surface perform data analysis to look for signs of past microbial life on Mars. Their data analysis workflow mainly involves identifying mineral compounds through the element abundance in spatially distributed data points. Working with the NASA JPL team, we identified pain points and needs to further develop their existing data visualization and analysis tool. Specifically, the team desired improvements for the process of creating and interpreting mineral composition groups. To address this problem, we developed an interactive tool that enables scientists to (1) cluster the data using either manual lasso-tool selection or through various machine learning clustering algorithms, and (2) compare the clusters and individual data points to make informed decisions about mineral compositions. Our preliminary tool supports a hybrid data analysis workflow where the user can manually refine the machine-generated clusters.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.