Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On point estimators for Gamma and Beta distributions (2205.10799v1)

Published 22 May 2022 in math.ST, stat.ME, and stat.TH

Abstract: Let $X_1,\ldots,X_n$ be a random sample from the Gamma distribution with density $f(x)=\lambda{\alpha}x{\alpha-1}e{-\lambda x}/\Gamma(\alpha)$, $x>0$, where both $\alpha>0$ (the shape parameter) and $\lambda>0$ (the reciprocal scale parameter) are unknown. The main result shows that the uniformly minimum variance unbiased estimator (UMVUE) of the shape parameter, $\alpha$, exists if and only if $n\geq 4$; moreover, it has finite variance if and only if $n\geq 6$. More precisely, the form of the UMVUE is given for all parametric functions $\alpha$, $\lambda$, $1/\alpha$ and $1/\lambda$. Furthermore, a highly efficient estimating procedure for the two-parameter Beta distribution is also given. This is based on a Stein-type covariance identity for the Beta distribution, followed by an application of the theory of $U$-statistics and the delta-method. MSC: Primary 62F10; 62F12; Secondary 62E15. Key words and phrases: unbiased estimation; Gamma distribution; Beta distribution; Ye-Chen-type closed-form estimators; asymptotic efficiency; $U$-statistics; Stein-type covariance identity; delta-method.

Summary

We haven't generated a summary for this paper yet.