Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the logarithm of characteristic function and stability parameter for symmetric stable laws (2008.04423v1)

Published 10 Aug 2020 in math.ST and stat.TH

Abstract: Let $X_1,\ldots,X_n$ be an i.i.d. sample from symmetric stable distribution with stability parameter $\alpha$ and scale parameter $\gamma$. Let $\varphi_n$ be the empirical characteristic function. We prove an uniform large deviation inequality: given preciseness $\epsilon>0$ and probability $p\in (0,1)$, there exists universal (depending on $\epsilon$ and $p$ but not depending on $\alpha$ and $\gamma$) constant $\bar{r}>0$ so that $$P\big(\sup_{u>0:r(u)\leq \bar{r}}|r(u)-\hat{r}(u)|\geq \epsilon\big)\leq p,$$ where $r(u)=(u\gamma){\alpha}$ and $\hat{r}(u)=-\ln|\varphi_n(u)|$. As an applications of the result, we show how it can be used in estimation unknown stability parameter $\alpha$.

Summary

We haven't generated a summary for this paper yet.