Onset of pattern formation in thin ferromagnetic films with perpendicular anisotropy (2205.10061v1)
Abstract: We consider the onset of pattern formation in an ultrathin ferromagnetic film of the form $\tilde{\Omega}t := \tilde{\Omega} \times [0,t]$ for $\tilde{ \Omega} \Subset \mathbb{R}2$ with preferred perpendicular magnetization direction. The relative micromagnetic energy is given by \begin{align} \mathcal{E}[M] &= \int{\tilde{\Omega}t} d2 |\nabla M|2+ Q \int{\tilde{\Omega}t} (M_12+M_22) + \int{\mathbb{R}3} |\mathcal{H}(M)|2 - \int_{\mathbb{R}3} |\mathcal{H}(e_3 \chi_{\tilde{ \Omega}})|2, \end{align} describing the energy difference for a given magnetization $M : \mathbb{R}3 \to \mathbb{R}3$ with $|M| = \chi_{\tilde{ \Omega}t}$ and the uniform magnetization $e_3 \chi{\tilde{ \Omega}_t}$. For $t \ll d$, we establish the scaling of the energy and a BV-bound in the critical regime here the base area of the film is of order $|\tilde{ \Omega}| \sim (Q-1){1/2} d e{\frac{2\pi d}t \sqrt{Q-1}}$. We furthermore investigate the onset of non-trivial pattern formation in the critical regime depending on the size of the rescaled film.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.