Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What's Behind the Mask: Understanding Masked Graph Modeling for Graph Autoencoders (2205.10053v2)

Published 20 May 2022 in cs.LG and cs.AI

Abstract: The last years have witnessed the emergence of a promising self-supervised learning strategy, referred to as masked autoencoding. However, there is a lack of theoretical understanding of how masking matters on graph autoencoders (GAEs). In this work, we present masked graph autoencoder (MaskGAE), a self-supervised learning framework for graph-structured data. Different from standard GAEs, MaskGAE adopts masked graph modeling (MGM) as a principled pretext task - masking a portion of edges and attempting to reconstruct the missing part with partially visible, unmasked graph structure. To understand whether MGM can help GAEs learn better representations, we provide both theoretical and empirical evidence to comprehensively justify the benefits of this pretext task. Theoretically, we establish close connections between GAEs and contrastive learning, showing that MGM significantly improves the self-supervised learning scheme of GAEs. Empirically, we conduct extensive experiments on a variety of graph benchmarks, demonstrating the superiority of MaskGAE over several state-of-the-arts on both link prediction and node classification tasks.

Citations (58)

Summary

We haven't generated a summary for this paper yet.