Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Rate Curriculum (2205.09180v4)

Published 18 May 2022 in cs.LG, cs.CL, and cs.CV

Abstract: Most curriculum learning methods require an approach to sort the data samples by difficulty, which is often cumbersome to perform. In this work, we propose a novel curriculum learning approach termed Learning Rate Curriculum (LeRaC), which leverages the use of a different learning rate for each layer of a neural network to create a data-agnostic curriculum during the initial training epochs. More specifically, LeRaC assigns higher learning rates to neural layers closer to the input, gradually decreasing the learning rates as the layers are placed farther away from the input. The learning rates increase at various paces during the first training iterations, until they all reach the same value. From this point on, the neural model is trained as usual. This creates a model-level curriculum learning strategy that does not require sorting the examples by difficulty and is compatible with any neural network, generating higher performance levels regardless of the architecture. We conduct comprehensive experiments on 12 data sets from the computer vision (CIFAR-10, CIFAR-100, Tiny ImageNet, ImageNet-200, Food-101, UTKFace, PASCAL VOC), language (BoolQ, QNLI, RTE) and audio (ESC-50, CREMA-D) domains, considering various convolutional (ResNet-18, Wide-ResNet-50, DenseNet-121, YOLOv5), recurrent (LSTM) and transformer (CvT, BERT, SepTr) architectures. We compare our approach with the conventional training regime, as well as with Curriculum by Smoothing (CBS), a state-of-the-art data-agnostic curriculum learning approach. Unlike CBS, our performance improvements over the standard training regime are consistent across all data sets and models. Furthermore, we significantly surpass CBS in terms of training time (there is no additional cost over the standard training regime for LeRaC). Our code is freely available at: https://github.com/CroitoruAlin/LeRaC.

Citations (8)

Summary

We haven't generated a summary for this paper yet.