Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Born machine for Monte Carlo event generation (2205.07674v2)

Published 16 May 2022 in quant-ph, cs.LG, and hep-ex

Abstract: Generative modeling is a promising task for near-term quantum devices, which can use the stochastic nature of quantum measurements as a random source. So called Born machines are purely quantum models and promise to generate probability distributions in a quantum way, inaccessible to classical computers. This paper presents an application of Born machines to Monte Carlo simulations and extends their reach to multivariate and conditional distributions. Models are run on (noisy) simulators and IBM Quantum superconducting quantum hardware. More specifically, Born machines are used to generate muonic force carrier (MFC) events resulting from scattering processes between muons and the detector material in high-energy physics colliders experiments. MFCs are bosons appearing in beyond-the-standard-model theoretical frameworks, which are candidates for dark matter. Empirical evidence suggests that Born machines can reproduce the marginal distributions and correlations of data sets from Monte Carlo simulations.

Citations (12)

Summary

We haven't generated a summary for this paper yet.