Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Descent Optimizes Infinite-Depth ReLU Implicit Networks with Linear Widths (2205.07463v1)

Published 16 May 2022 in cs.LG, math.OC, and stat.ML

Abstract: Implicit deep learning has recently become popular in the machine learning community since these implicit models can achieve competitive performance with state-of-the-art deep networks while using significantly less memory and computational resources. However, our theoretical understanding of when and how first-order methods such as gradient descent (GD) converge on \textit{nonlinear} implicit networks is limited. Although this type of problem has been studied in standard feed-forward networks, the case of implicit models is still intriguing because implicit networks have \textit{infinitely} many layers. The corresponding equilibrium equation probably admits no or multiple solutions during training. This paper studies the convergence of both gradient flow (GF) and gradient descent for nonlinear ReLU activated implicit networks. To deal with the well-posedness problem, we introduce a fixed scalar to scale the weight matrix of the implicit layer and show that there exists a small enough scaling constant, keeping the equilibrium equation well-posed throughout training. As a result, we prove that both GF and GD converge to a global minimum at a linear rate if the width $m$ of the implicit network is \textit{linear} in the sample size $N$, i.e., $m=\Omega(N)$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.