Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Support Vectors and Gradient Dynamics of Single-Neuron ReLU Networks (2202.05510v2)

Published 11 Feb 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Understanding implicit bias of gradient descent for generalization capability of ReLU networks has been an important research topic in machine learning research. Unfortunately, even for a single ReLU neuron trained with the square loss, it was recently shown impossible to characterize the implicit regularization in terms of a norm of model parameters (Vardi & Shamir, 2021). In order to close the gap toward understanding intriguing generalization behavior of ReLU networks, here we examine the gradient flow dynamics in the parameter space when training single-neuron ReLU networks. Specifically, we discover an implicit bias in terms of support vectors, which plays a key role in why and how ReLU networks generalize well. Moreover, we analyze gradient flows with respect to the magnitude of the norm of initialization, and show that the norm of the learned weight strictly increases through the gradient flow. Lastly, we prove the global convergence of single ReLU neuron for $d = 2$ case.

Summary

We haven't generated a summary for this paper yet.