Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Percolation critical probabilities of matching lattice-pairs (2205.02734v3)

Published 5 May 2022 in math.PR, math-ph, and math.MP

Abstract: A necessary and sufficient condition is established for the strict inequality $p_c(G_)<p_c(G)$ between the critical probabilities of site percolation on a quasi-transitive, plane graph $G$ and on its matching graph $G_$. It is assumed that $G$ is properly embedded in either the Euclidean or the hyperbolic plane. When $G$ is transitive, strict inequality holds if and only if $G$ is not a triangulation. The basic approach is the standard method of enhancements, but its implemention has complexity arising from the non-Euclidean (hyperbolic) space, the study of site (rather than bond) percolation, and the generality of the assumption of quasi-transitivity. This result is complementary to the work of the authors ("Hyperbolic site percolation", arXiv:2203.00981) on the equality $p_u(G) + p_c(G_*) = 1$, where $p_u$ is the critical probability for the existence of a unique infinite open cluster. It implies for transitive $G$ that $p_u(G) + p_c(G) \ge 1$, with equality if and only if $G$ is a triangulation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.