Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

Monotonicity versions of Epstein's Concavity Theorem and related inequalities (2205.02342v4)

Published 4 May 2022 in math.FA and quant-ph

Abstract: Many trace inequalities can be expressed either as concavity/convexity theorems or as monotonicity theorems. A classic example is the joint convexity of the quantum relative entropy which is equivalent to the Data Processing Inequality. The latter says that quantum operations can never increase the relative entropy. The monotonicity versions often have many advantages, and often have direct physical application, as in the example just mentioned. Moreover, the monotonicity results are often valid for a larger class of maps than, say, quantum operations (which are completely positive). In this paper we prove several new monotonicity results, the first of which is a monotonicity theorem that has as a simple corollary a celebrated concavity theorem of Epstein. Our starting points are the monotonicity versions of the Lieb Concavity and the Lieb Convexity Theorems. We also give two new proofs of these in their general forms using interpolation. We then prove our new monotonicity theorems by several duality arguments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.