Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel machine learning enabled hybrid optimization framework for efficient and transferable coarse-graining of a model polymer (2204.13295v1)

Published 28 Apr 2022 in physics.chem-ph and physics.comp-ph

Abstract: This work presents a novel framework governing the development of an efficient, accurate, and transferable coarse-grained (CG) model of a polyether material. The proposed framework combines the two fundamentally different classical optimization approaches for the development of coarse-grained model parameters; namely bottom-up and top-down approaches. This is achieved through integrating the optimization algorithms into a ML model, trained using molecular dynamics (MD) simulation data. In the bottom-up approach, bonded interactions of the CG model are optimized using deep neural networks (DNN), where atomistic bonded distributions are matched. The atomistic distributions emulate the local chain structure. In the top-down approach, optimization of nonbonded potentials is accomplished by reproducing the temperature-dependent experimental density. We demonstrate that CG model parameters achieved through our machine-learning enabled hybrid optimization framework fulfills the thermodynamic consistency and transferability issues associated with the classical approaches to coarse-graining model polymers. We demonstrate the efficiency, accuracy, and transferability of the developed CG model, using our novel framework through accurate predictions of chain size as well as chain dynamics, including the limiting behavior of the glass transition temperature, diffusion, and stress relaxation spectrum, where none were included in the potential parameterization process. The accuracy of the predicted properties are evaluated in the context of molecular theories and available experimental data.

Summary

We haven't generated a summary for this paper yet.