Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial-Residual-Coarse-Graining: Applying machine learning theory to systematic molecular coarse-graining (1904.00871v2)

Published 1 Apr 2019 in physics.chem-ph

Abstract: We utilize connections between molecular coarse-graining approaches and implicit generative models in machine learning to describe a new framework for systematic molecular coarse-graining (CG). Focus is placed on the formalism encompassing generative adversarial networks. The resulting method enables a variety of model parameterization strategies, some of which show similarity to previous CG methods. We demonstrate that the resulting framework can rigorously parameterize CG models containing CG sites with no prescribed connection to the reference atomistic system (termed virtual sites); however, this advantage is offset by the lack of a closed-form expression for the CG Hamiltonian at the resolution obtained after integration over the virtual CG sites. Computational examples are provided for cases in which these methods ideally return identical parameters as Relative Entropy Minimization (REM) CG but where traditional REM CG optimization equations are not applicable.

Summary

We haven't generated a summary for this paper yet.