Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Volumetric Benchmarking of Error Mitigation with Qermit (2204.09725v3)

Published 20 Apr 2022 in quant-ph

Abstract: The detrimental effect of noise accumulates as quantum computers grow in size. In the case where devices are too small or noisy to perform error correction, error mitigation may be used. Error mitigation does not increase the fidelity of quantum states, but instead aims to reduce the approximation error in quantities of concern, such as expectation values of observables. However, it is as yet unclear which circuit types, and devices of which characteristics, benefit most from the use of error mitigation. Here we develop a methodology to assess the performance of quantum error mitigation techniques. Our benchmarks are volumetric in design, and are performed on different superconducting hardware devices. Extensive classical simulations are also used for comparison. We use these benchmarks to identify disconnects between the predicted and practical performance of error mitigation protocols, and to identify the situations in which their use is beneficial. To perform these experiments, and for the benefit of the wider community, we introduce Qermit - an open source python package for quantum error mitigation. Qermit supports a wide range of error mitigation methods, is easily extensible and has a modular graph-based software design that facilitates composition of error mitigation protocols and subroutines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. John Preskill “Quantum Computing in the NISQ era and beyond” In Quantum 2 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2018, pp. 79 DOI: 10.22331/q-2018-08-06-79
  2. Aram W. Harrow and Ashley Montanaro “Quantum computational supremacy” In Nature 549.7671 Springer ScienceBusiness Media LLC, 2017, pp. 203–209 DOI: 10.1038/nature23458
  3. “Procedure for systematically tuning up cross-talk in the cross-resonance gate” In Phys. Rev. A 93 American Physical Society, 2016, pp. 060302 DOI: 10.1103/PhysRevA.93.060302
  4. Lorenza Viola, Emanuel Knill and Seth Lloyd “Dynamical Decoupling of Open Quantum Systems” In Phys. Rev. Lett. 82 American Physical Society, 1999, pp. 2417–2421 DOI: 10.1103/PhysRevLett.82.2417
  5. “Error-Robust Quantum Logic Optimization Using a Cloud Quantum Computer Interface” In Phys. Rev. Applied 15 American Physical Society, 2021, pp. 064054 DOI: 10.1103/PhysRevApplied.15.064054
  6. Peter W. Shor “Scheme for reducing decoherence in quantum computer memory” In Phys. Rev. A 52 American Physical Society, 1995, pp. R2493–R2496 DOI: 10.1103/PhysRevA.52.R2493
  7. Barbara M. Terhal “Quantum error correction for quantum memories” In Rev. Mod. Phys. 87 American Physical Society, 2015, pp. 307–346 DOI: 10.1103/RevModPhys.87.307
  8. “Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers” In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19 Providence, RI, USA: Association for Computing Machinery, 2019, pp. 1015–1029 DOI: 10.1145/3297858.3304075
  9. “t||||ket⟩: a retargetable compiler for NISQ devices” In Quantum Science and Technology 6.1 IOP Publishing, 2020, pp. 014003 DOI: 10.1088/2058-9565/ab8e92
  10. Joel J. Wallman and Joseph Emerson “Noise tailoring for scalable quantum computation via randomized compiling” In Phys. Rev. A 94 American Physical Society, 2016, pp. 052325 DOI: 10.1103/PhysRevA.94.052325
  11. Kristan Temme, Sergey Bravyi and Jay M. Gambetta “Error Mitigation for Short-Depth Quantum Circuits” In Phys. Rev. Lett. 119 American Physical Society, 2017, pp. 180509 DOI: 10.1103/PhysRevLett.119.180509
  12. Ying Li and Simon C. Benjamin “Efficient Variational Quantum Simulator Incorporating Active Error Minimization” In Phys. Rev. X 7 American Physical Society, 2017, pp. 021050 DOI: 10.1103/PhysRevX.7.021050
  13. “Digital zero noise extrapolation for quantum error mitigation” In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 2020, pp. 306–316 DOI: 10.1109/QCE49297.2020.00045
  14. “Error mitigation with Clifford quantum-circuit data” In Quantum 5 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 592 DOI: 10.22331/q-2021-11-26-592
  15. “Virtual Distillation for Quantum Error Mitigation” In Phys. Rev. X 11 American Physical Society, 2021, pp. 041036 DOI: 10.1103/PhysRevX.11.041036
  16. “Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation” In Journal of the Physical Society of Japan 90.3, 2021, pp. 032001 DOI: 10.7566/JPSJ.90.032001
  17. “Noisy intermediate-scale quantum algorithms” In Rev. Mod. Phys. 94 American Physical Society, 2022, pp. 015004 DOI: 10.1103/RevModPhys.94.015004
  18. Bálint Koczor “Exponential Error Suppression for Near-Term Quantum Devices” In Phys. Rev. X 11 American Physical Society, 2021, pp. 031057 DOI: 10.1103/PhysRevX.11.031057
  19. “Surface codes: Towards practical large-scale quantum computation” In Phys. Rev. A 86 American Physical Society, 2012, pp. 032324 DOI: 10.1103/PhysRevA.86.032324
  20. Joe O’Gorman and Earl T. Campbell “Quantum computation with realistic magic-state factories” In Phys. Rev. A 95 American Physical Society, 2017, pp. 032338 DOI: 10.1103/PhysRevA.95.032338
  21. “Application-Motivated, Holistic Benchmarking of a Full Quantum Computing Stack” In Quantum 5 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2021, pp. 415 DOI: 10.22331/q-2021-03-22-415
  22. Robin Blume-Kohout and Kevin C. Young “A volumetric framework for quantum computer benchmarks” In Quantum 4 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2020, pp. 362 DOI: 10.22331/q-2020-11-15-362
  23. “Fundamental limits of quantum error mitigation” In npj Quantum Information 8.1, 2022, pp. 114 DOI: 10.1038/s41534-022-00618-z
  24. Zhenyu Cai “A Practical Framework for Quantum Error Mitigation”, 2021 arXiv:2110.05389 [quant-ph]
  25. G. Chiribella, G.M. D’Ariano and P. Perinotti “Quantum Circuit Architecture” In Phys. Rev. Lett. 101 American Physical Society, 2008, pp. 060401 DOI: 10.1103/PhysRevLett.101.060401
  26. “Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates” In Phys. Rev. Lett. 116 American Physical Society, 2016, pp. 250501 DOI: 10.1103/PhysRevLett.116.250501
  27. Zhenyu Cai “Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications” In npj Quantum Information 7.1 Springer ScienceBusiness Media LLC, 2021 DOI: 10.1038/s41534-021-00404-3
  28. “Mitiq: A software package for error mitigation on noisy quantum computers” In Quantum 6 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 774 DOI: 10.22331/q-2022-08-11-774
  29. “Unifying and benchmarking state-of-the-art quantum error mitigation techniques” In Quantum 7 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2023, pp. 1034 DOI: 10.22331/q-2023-06-06-1034
  30. Andrea Mari, Nathan Shammah and William J. Zeng “Extending quantum probabilistic error cancellation by noise scaling” In Physical Review A 104.5 American Physical Society (APS), 2021 DOI: 10.1103/physreva.104.052607
  31. Eloísa Díaz-Francés and Francisco J. Rubio “On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables” In Statistical Papers 54.2, 2013, pp. 309–323 DOI: 10.1007/s00362-012-0429-2
  32. “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?”, 2021 arXiv:2109.01051 [quant-ph]
  33. “On the Qubit Routing Problem” Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2019 DOI: 10.4230/LIPICS.TQC.2019.5
  34. “Validating quantum computers using randomized model circuits” In Phys. Rev. A 100 American Physical Society, 2019, pp. 032328 DOI: 10.1103/PhysRevA.100.032328
  35. “A variational eigenvalue solver on a photonic quantum processor” In Nature Communications 5.1, 2014, pp. 4213 DOI: 10.1038/ncomms5213
  36. “Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions” In Phys. Rev. A 98 American Physical Society, 2018, pp. 022322 DOI: 10.1103/PhysRevA.98.022322
  37. “Application-Oriented Performance Benchmarks for Quantum Computing”, 2023 arXiv:2110.03137 [quant-ph]
  38. “On the complexity and verification of quantum random circuit sampling” In Nature Physics 15.2, 2019, pp. 159–163 DOI: 10.1038/s41567-018-0318-2
  39. Ramis Movassagh “Efficient unitary paths and quantum computational supremacy: A proof of average-case hardness of Random Circuit Sampling”, 2018 arXiv:1810.04681 [quant-ph]
  40. “Characterizing quantum supremacy in near-term devices” In Nature Physics 14.6, 2018, pp. 595–600 DOI: 10.1038/s41567-018-0124-x
  41. “Complexity-Theoretic Foundations of Quantum Supremacy Experiments”, 2016 arXiv:1612.05903 [quant-ph]
  42. Robert R. Tucci “An Introduction to Cartan’s KAK Decomposition for QC Programmers”, 2005 arXiv:quant-ph/0507171 [quant-ph]
  43. “Phase Gadget Synthesis for Shallow Circuits” In Electronic Proceedings in Theoretical Computer Science 318 Open Publishing Association, 2020, pp. 214–229 DOI: 10.4204/eptcs.318.13
  44. “Efficient Quantum Algorithms for Simulating Sparse Hamiltonians” In Communications in Mathematical Physics 270.2, 2007, pp. 359–371 DOI: 10.1007/s00220-006-0150-x
  45. “Measuring the capabilities of quantum computers” In Nature Physics 18.1 Springer ScienceBusiness Media LLC, 2021, pp. 75–79 DOI: 10.1038/s41567-021-01409-7
  46. Alexander M. Dalzell, Nicholas Hunter-Jones and Fernando G.S.L. Brandão “Random Quantum Circuits Anticoncentrate in Log Depth” In PRX Quantum 3 American Physical Society, 2022, pp. 010333 DOI: 10.1103/PRXQuantum.3.010333
  47. “Evidence for the utility of quantum computing before fault tolerance” In Nature 618.7965, 2023, pp. 500–505 DOI: 10.1038/s41586-023-06096-3
  48. “Scalable error mitigation for noisy quantum circuits produces competitive expectation values” In Nature Physics 19.5, 2023, pp. 752–759 DOI: 10.1038/s41567-022-01914-3
  49. “Exponentially tighter bounds on limitations of quantum error mitigation”, 2023 arXiv:2210.11505 [quant-ph]
  50. Ryuji Takagi, Hiroyasu Tajima and Mile Gu “Universal sampling lower bounds for quantum error mitigation”, 2022 arXiv:2208.09178 [quant-ph]
  51. Kento Tsubouchi, Takahiro Sagawa and Nobuyuki Yoshioka “Universal cost bound of quantum error mitigation based on quantum estimation theory”, 2023 arXiv:2208.09385 [quant-ph]
  52. “Volumetric Benchmarking of Error Mitigation with Qermit: Experimental Data” Zenodo, 2022 DOI: 10.5281/zenodo.6472281
Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com